Abstract:
A micromechanical vibration system. The system includes a micromechanical vibrating body with at least one micromirror. The micromirror extends in a first main extension plane and has a face reflective to incident light. The system further includes an electromagnetic drive unit comprising a coil body and at least two magnets. The coil body is arranged in a second main extension plane parallel to the first main extension plane. The coil body is arranged laterally and/or on a side opposite the reflective face of the micromirror and/or on a side facing the reflective face of the micromirror. The at least two magnets extend in a third main extension plane of the coil body parallel to the first and second main extension plane and are arranged on the side opposite the reflective face of the micromirror. A single first magnetic flux plate is arranged in an intermediate space between the magnets.
Abstract:
A MEMS device and a corresponding operating method. The MEMS device is equipped with an oscillatory micromechanical system, which is excitable in a plurality of useful modes, the oscillatory micromechanical system including at least one system component, which is excitable in at least one parasitic spurious mode by a superposition of the useful modes. An adjusting device is provided, which is configured in such a way that it counteracts the parasitic spurious mode by application of an electromagnetic interaction to the system component.
Abstract:
The disclosure relates to a method for measuring a current using a diamond material. The diamond material has at least one nitrogen deposit and an imperfection in a crystal lattice of the diamond material, adjacent to the nitrogen deposit. The method comprises a providing step, a detecting step and an evaluating step. In the providing step, electromagnetic waves are provided to excite the diamond material. In the evaluating step, an intensity of a fluorescence of the diamond material is detected. In the evaluating step, the intensity and a frequency of the electromagnetic waves are evaluated in order to determine a magnetic field strength influencing the fluorescence.
Abstract:
An assembly body for micromirror chips that partly encloses an internal cavity, the assembly body including at two sides oriented away from one another, at least one respective partial outer wall that is fashioned transparent for a specified spectrum, and the assembly body having at least one first outer opening on which a first micromirror chip can be attached, and a second outer opening on which a second micromirror chip can be attached, in such a way that a light beam passing through the first partial outer wall is capable of being deflected by the first micromirror chip onto the second micromirror chip, and is capable of being deflected by the second micromirror chip through the second partial outer wall. A mirror device and a production method for a mirror device are also described.
Abstract:
A micromirror scanner and a method for controlling a micromirror scanner. The method includes furnishing a shot pattern which has at least information regarding first control application signals as a function of mirror positions of a displaceable micromechanical mirror of the micromirror scanner, which are designated to control a light source of the scanner; determining a mirror position of the mirror; emitting light beams into a solid angle; measuring light beams reflected at an object in the solid angle to determine a distance between the object and the scanner; determining a nature or position of the object with respect to the scanner as a function of the determined distance and the determined current mirror position; and adapting the shot pattern as a function of the position and/or nature of the object.