Abstract:
A semiconductor component that includes at least one dielectric layer and at least one first electrode and one second electrode. A first defect type and a second defect type, which is different from the first defect type, are also present in dielectric layer. The at least two different defect types accumulate at one of the two electrodes as a function of a main operating voltage applied between the first electrode and the second electrode, and of a main operating temperature that is present at characteristic times τ1 and τ2, and generate the maximum changes in barrier height δΦ1 and δΦ2 at the electrodes. τ1 and δΦ1 are associated with the first defect type, and τ2 and δΦ2 are associated with the second defect type. τ1
Abstract:
A semiconductor component that includes at least one dielectric layer and at least one first electrode and one second electrode. In addition, at least two defect types different from one another are present in the dielectric layer. These at least two defect types different from one another move along localized defect states, each at an average effective distance, in the direction of one of the two electrodes as a function of an operating voltage that is applied between the first electrode and the second electrode, and an operating temperature that is present. The average effective distance is greater than 3.2 nm.
Abstract:
A sensor element for acquiring at least one property of a measurement gas in a measurement gas compartment, in particular for acquiring a portion of a gas component in the measurement gas or a temperature of the measurement gas, includes a bearer element and at least one solid electrolyte layer. The solid electrolyte layer is situated on the bearer element. The solid electrolyte layer is at least partially epitaxially fashioned. The bearer element has at least one opening, so that the solid electrolyte layer has at least one membrane segment. In addition, a method is provided for producing such a sensor element.
Abstract:
An electrical circuit includes a solar cell that has a photovoltaically active front side and a back side. An electronic or micromechanical component is arranged on the back side of the solar cell and is electrically connected to the photovoltaically active front side of the solar cell by a contact-making structure. The electrical circuit also includes a transparent first protective layer that is arranged on the photovoltaically active front side of the solar cell. The contact-making structure has a first contact-making section that is arranged on a front side of the first protective layer facing away from the solar cell.
Abstract:
A micromechanical sound transducer system includes a substrate that includes (a) a cavity with a cavity edge area, (b) a front side, and (c) a rear side; a piezoelectric vibrating beam that is elastically suspended on the front side and that extends across the cavity; and, for the piezoelectric vibrating beam, a respective deflection limiting device that is on a front edge area of the respective vibrating beam and that is configured to limit a deflection of the respective vibrating beam to a limiting deflection by causing the respective front edge area of the respective vibrating beam to interact with the cavity edge area or an opposing front edge area of another vibrating beam.
Abstract:
An assembly body for micromirror chips that partly encloses an internal cavity, the assembly body including at two sides oriented away from one another, at least one respective partial outer wall that is fashioned transparent for a specified spectrum, and the assembly body having at least one first outer opening on which a first micromirror chip can be attached, and a second outer opening on which a second micromirror chip can be attached, in such a way that a light beam passing through the first partial outer wall is capable of being deflected by the first micromirror chip onto the second micromirror chip, and is capable of being deflected by the second micromirror chip through the second partial outer wall. A mirror device and a production method for a mirror device are also described.
Abstract:
The invention relates to a galvanic cell (2) comprising a housing (4) which is equipped with at least one cell coil or a cell stack and comprising a sensor (16) for detecting the pressure of the galvanic cell (2). The housing (4) has a recess which is formed from a through-opening between an interior and an exterior of the cell (2), and the sensor (16) is arranged outside of the cell (2) so as to be secured directly or indirectly to the cell. The sensor (16), in particular a micro electromechanical system, is in contact with the interior of the galvanic cell (2) via the recess. The invention additionally relates to a method for producing such a galvanic cell (2).
Abstract:
In a method for creating hydrophilic surfaces or surface regions on one or more silicon surfaces of a substrate, a vapour phase of hydrogen peroxide is generated in a reactor by heating an aqueous hydrogen peroxide solution. The substrate having the silicon surface or surfaces to be treated is exposed to the vapour phase, whereby a hydrophilisation of the silicon surfaces in achieved.
Abstract:
The invention relates to a galvanic cell (2) comprising a housing (4) which is equipped with at least one cell coil or a cell stack and comprising a sensor (16) for detecting the pressure of the galvanic cell (2). The housing (4) has a recess which is formed from a through-opening between an interior and an exterior of the cell (2), and the sensor (16) is arranged outside of the cell (2) so as to be secured directly or indirectly to the cell. The sensor (16), in particular a micro electromechanical system, is in contact with the interior of the galvanic cell (2) via the recess. The invention additionally relates to a method for producing such a galvanic cell (2).
Abstract:
An assembly body for micromirror chips that partly encloses an internal cavity, the assembly body including at two sides oriented away from one another, at least one respective partial outer wall that is fashioned transparent for a specified spectrum, and the assembly body having at least one first outer opening on which a first micromirror chip can be attached, and a second outer opening on which a second micromirror chip can be attached, in such a way that a light beam passing through the first partial outer wall is capable of being deflected by the first micromirror chip onto the second micromirror chip, and is capable of being deflected by the second micromirror chip through the second partial outer wall. A mirror device and a production method for a mirror device are also described.