Abstract:
A security image is disclosed which is formed from flakes having a first color with flakes having a second different color mixed within a carrier uniformly. The flakes having the second color are magnetically orientable and the flakes having the first color are non-magnetic and do not align or orient in a magnetic field. By exposing at least a single coated region to a magnetic field that is substantially orthogonal to the substrate upon which the coating of flakes is coated, a visible region having the first color is provided as the magnetic flakes are upstanding and the non-magnetic flakes are lying flat upon the substrate. In another region where there is no field applied a visible region having third perceived color different from, however formed from the first color or the second color is seen.
Abstract:
A security article is a substrate having a diffractive grating thereon, coated with a windowed high index layer and a color shifting coating visible through the window. The color shifting coating is disposed on the high index layer or on the opposite side of the substrate. Alternatively, a thin film color shifting structure conforming the diffractive grating is disposed between the grating and the windowed high index layer, also conforming to the shape of the diffractive grating. Alternatively, an ink with low density of color shifting pigments is applied over the high index layer conforming to the shape of the diffractive grating. The resulting color shifting image provides a reference to a holographic image.
Abstract:
A structure for providing an optical effect comprises a first and second substrates hot stamped together by an adhesive. The adhesive comprises an energy activated binder having a plurality of particles distributed therein or thereon for providing the optical effect detectable through the first substrate.
Abstract:
An optical structure is provided wherein a windowed demetallized hologram is hot stamped on to an optically variable foil and wherein the demetallized hologram optionally has a coating of optically variable ink thereon. In another embodiment a hologram is hot stamped to a banknote or document printed with a color-shifting ink.
Abstract:
Opaque glitter particles that are uniform in size and shape are disclosed that have an optically variable color with a change in angle of incident light. The glitter particles have an organic substrate and an optical interference structure on one or both sides of the organic substrate. The optical interference design can be a Fabry-Perot structure or can be an optically variable ink.
Abstract:
An optical structure is disclosed which includes a light transmissive substrate having a surface relief pattern applied thereon, such as a hologram. One or more layers can be patterned corresponding to materials playing the role of absorbers or reflectors on a Fabry-Perot type of optical structure. These materials are applied over portions of the surface relief pattern so as to form alphanumeric characters, bars codes, or pictorial or graphical designs. Additional layers may be applied to the patterned layer of the reflective or absorber materials and exposed portions of the surface relief pattern in order to provide desirable optical effects to the exposed portions of the surface relief pattern. In some embodiments, the optically active coating is a color shifting thin film, or contains color shifting flakes based on Fabry Perot designs. Optionally, the material of the optically active coating is either index matched or not index matched to the light transmissive substrate in order to optically erase or enhance the effect of the surface relief pattern in the portions of the surface relief pattern not covered by the reflective or absorber materials.
Abstract:
The invention provides an optical structure with low chroma and brightness in the visible region and low emissivity in the infrared region. The optical structure includes an interference structure having an infrared reflective layer and an infrared absorbing thin film layer. These layers are in turn separated by a thin film spacer of a dielectric or semiconductor material. The reflectivity and transmission of the layers are selectively controlled through the thickness of the layers such that the visual reflectivity and color is independent of the infrared properties of the absorber and reflector layers.
Abstract:
A method for determining the presence of an analyte in a fluid is described along with various components of an apparatus specifically designed to carry out the method. The method involves taking a reflectance reading from one surface of an inert porous matrix impregnated with a reagent that will interact with the analyte to produce a light-absorbing reaction product when the fluid being analyzed is applied to another surface and migrates through the matrix to the surface being read. Reflectance measurements are made at two separate wavelengths in order to eliminate interferences, and a timing circuit is triggered by an initial decrease in reflectance by the wetting of the surface whose reflectance is being measured by the fluid which passes through the inert matrix. Repeatability is insured by a normalization technique performed on the light source before each reading, and an alignment method operated on the reagent strip prior to emplacement on the apparatus. The method and apparatus are particularly suitable for the measurement of glucose levels in blood without requiring separation of red blood cells from serum or plasma.
Abstract:
A method for determining the presence of an analyte in a fluid is described along with various components of an apparatus specifically designed to carry out the method. The method involves taking a reflectance reading from one surface of an inert porous matrix impregnated with a reagent that will interact with the analyte to produce a light-absorbing reaction product when the fluid being analyzed is applied to another surface and migrates through the matrix to the surface being read. Reflectance measurements are made at two separate wavelengths in order to eliminate interferences, and a timing circuit is triggered by an initial decrease in reflectance by the wetting of the surface whose reflectance is being measured by the fluid which passes through the inert matrix. Repeatability is insured by a normalization technique performed on the light source before each reading, and an alignment method operated on the reagent strip prior to emplacement on the apparatus. The method and apparatus are particularly suitable for the measurement of flucose levels in blood without requiring separation of red blood cells from serum or plasma.
Abstract:
A method for determining the presence of an analyte in a fluid is described along with various components of an apparatus specifically designed to carry out the method. The method involves taking a reflectance reading from one surface of an inert porous matrix impregnated with a reagent that will interact with the analyte to produce a light-absorbing reaction product when the fluid being analyzed is applied to another surface and migrates through the matrix to the surface being read. Reflectance measurements are made at two separate wavelengths in order to eliminate interferences, and a timing circuit is triggered by an initial decrease in reflectance by the wetting of the surface whose reflectance is being measured by the fluid which passes through the inert matrix. The method and apparatus are particularly suitable for the measurement of glucose levels in blood without requiring separation of red blood cells from serum or plasma.