Abstract:
An OLED display device includes a substrate. A first electrode is disposed on the substrate. An organic light emitting layer is disposed on the first electrode. A second electrode is disposed on the organic light emitting layer. A thin film encapsulation layer is disposed on the second electrode. The thin film encapsulation layer includes at least one inorganic layer and at least one organic layer that is disposed alternately with the at least one inorganic layer. The at least one organic layer includes a low refractive index layer overlapping the organic light emitting layer and a high refractive index layer disposed on the low refractive index layer. The high refractive index layer includes a convex surface protruding toward the organic light emitting layer.
Abstract:
A method of manufacturing an organic light emitting display apparatus includes: preparing a substrate having a first surface and a second surface opposite to the first surface; forming a through-hole penetrating the substrate from the first surface to the second surface; forming a humidity preventing layer on the substrate; forming a plurality of organic light emitting diodes on the substrate; and removing an organic light emitting diode adjacent to the through-hole from among the plurality of organic light emitting diodes, in which the humidity preventing layer may be formed on the substrate via a sequential vapor infiltration (SVI) process.
Abstract:
Provided are an organic light-emitting display apparatus and a method of manufacturing the same. The organic light-emitting display apparatus includes a first substrate; an organic light-emitting device provided on the first substrate and including a first electrode, a second electrode, and an intermediate layer positioned between the first electrode and the second electrode; a second substrate covering the organic light-emitting device and disposed to face the first substrate; and a sealant bonding the first substrate and the second substrate, wherein at least a portion of the sealant is a intermixing region which is formed as an inorganic material permeates an organic material.
Abstract:
A flexible display panel includes a display area to display an image, and a non-display area disposed outside the display area. The non-display area includes a first portion and a second portion. The first portion extends from the display area, and includes a support layer disposed on a flexible substrate. The second portion extends from the first portion, and is bent from a plane of the first portion. A property of a material of the support layer in the first portion is different than the property of the material of the support layer in the second portion.
Abstract:
A flat display apparatus includes a first substrate, a display unit on the first substrate, a second substrate opposite the first substrate, a touch screen layer on a bottom surface of the second substrate that faces the display unit, a protection layer on the bottom surface of the second substrate, covering the touch screen layer, and including an inorganic layer, and a sealing member between the first substrate and the protection layer, surrounding the display unit, and binding the first and second substrates together by binding to the inorganic layer of the protection layer.
Abstract:
A display device includes: a substrate comprising a first region and a second region bent relative to the first region; a plurality of first pixels at the first region, each of the first pixels comprising a first light-emitting diode (LED), the first LED comprising a pixel electrode, an emission layer for emitting light of a first color, and a counter electrode; a plurality of second pixels at the second region, each of the second pixels comprising a second LED, the second LED comprising a pixel electrode, an emission layer configured to emit the first color, and a counter electrode; and an optical resonance layer at the second region corresponding to the second LED.
Abstract:
Provided are an organic light-emitting display apparatus and a method of manufacturing the same. The organic light-emitting display apparatus includes a first substrate; an organic light-emitting device provided on the first substrate and including a first electrode, a second electrode, and an intermediate layer positioned between the first electrode and the second electrode; a second substrate covering the organic light-emitting device and disposed to face the first substrate; and a sealant bonding the first substrate and the second substrate, wherein at least a portion of the sealant is a intermixing region which is formed as an inorganic material permeates an organic material.
Abstract:
A surface inspection apparatus and method, and a method of manufacturing a display device are disclosed. In one aspect, the surface inspection method includes placing an object on a stage comprising a top surface inclined at a predetermined angle with respect to a plane having a first direction and a second direction crossing the first direction. The method also includes irradiating light onto the object via a surface inspection unit. The method also includes obtaining a first image comprising first interference fringes captured by the imaging device, moving at least one of the surface inspection unit and the stage in at least one of the first and second directions, obtaining a second image including second interference fringes captured by the imaging device, and moving the surface inspection unit in the third direction so as to correct movement of the second interference fringes with respect to the first interference fringes.
Abstract:
A display device includes: a substrate; a display element on the substrate; a thin-film encapsulation layer on the display element, the thin-film encapsulation layer including at least one inorganic layer and at least one organic layer; and a lower layer below the thin-film encapsulation layer, the lower layer including a first surface parallel to an upper surface of the substrate and a second surface extending in a direction crossing the upper surface of the substrate. The at least one inorganic layer is has a first thickness on the first surface of the lower layer and a second thickness on the second surface of the lower layer, the first thickness is greater than or equal to the second thickness, and a ratio of the second thickness to the first thickness is about 0.51 or more.
Abstract:
A mask, a mask assembly, and a method of fabricating a mask are disclosed herein. The mask comprises a polymer film in which at least one cell region and at least one peripheral region are defined, the at least one peripheral region surrounding the at least one cell region, a conductive layer disposed on the polymer film and including a metal, an inorganic layer disposed between the polymer film and the conductive layer and including a silicon-based inorganic material, and holes that penetrate the polymer film, the conductive layer, and the inorganic layer and overlap the at least one cell region in a plan view.