Abstract:
A display device includes a plurality of pixels, a driving integrated circuit (IC) configured to generate a data voltage for driving the pixels, a display substrate including a display region in which the pixels are disposed and a driving IC region in which the driving IC is disposed, and a first power wire overlapping the driving IC region, wherein the first power wire is insulated from the driving IC, and the first power wire transmits a first power-supply voltage for driving the pixels.
Abstract:
A method of manufacturing a display device is provided. A method of manufacturing a display device comprises preparing a thin film forming apparatus including a crucible, which stores a source material for forming a thin film, and a front heatsink, which is disposed on the crucible and includes a reflective plate, wherein the reflective plate has a first surface with a first reflectivity and a second surface with a second reflectivity, which is different from the first reflectivity; and forming a thin film on a substrate by evaporating the source material of the thin film forming apparatus.
Abstract:
A liquid crystal display includes a first pixel, a second pixel, and a third pixel each displaying a different color. A first data line is positioned between the first pixel and the second pixel, and a second data line is positioned between the second pixel and the third pixel. A first pixel electrode, a second pixel electrode, and a third pixel electrode are respectively positioned in the first, second, and third pixels. An interval between the first pixel electrode and the first data line is larger than an interval between the second pixel electrode and the first data line. An interval between the second pixel electrode and the second data line is smaller than an interval between the third pixel electrode and the second data line.
Abstract:
A liquid crystal display includes a first pixel, a second pixel, and a third pixel each displaying a different color. A first data line is positioned between the first pixel and the second pixel, and a second data line is positioned between the second pixel and the third pixel. A first pixel electrode, a second pixel electrode, and a third pixel electrode are respectively positioned in the first, second, and third pixels. An interval between the first pixel electrode and the first data line is larger than an interval between the second pixel electrode and the first data line. An interval between the second pixel electrode and the second data line is smaller than an interval between the third pixel electrode and the second data line.
Abstract:
A liquid crystal display includes a first substrate facing a second substrate, a liquid crystal layer disposed between the first substrate and the second substrate, a first field generating electrode on the first substrate, and a second field generating electrode on the first substrate and including a plurality of branch electrodes overlapped with the first field generating electrode. The second field generating electrode includes a wing connected to an end of a first branch electrode positioned at an outermost side the plurality of branch electrodes.
Abstract:
A display device includes a substrate including a first display area and a second display area. The first display area includes first pixel areas, each including one or more first pixels. The second display area includes second pixel areas including one or more second pixels and a light transmittance area having a higher light transmittance than the second pixel area. The first and second display areas include a common electrode that transmits a constant common voltage. The common electrode in the second display area includes patterned regions that correspond to a first light transmittance area included in the light transmittance area. A thickness of the common electrode in the patterned regions is smaller than a thickness of the common electrode in a region other than the patterned regions or equals zero. The patterned regions and the second pixel areas extend alternately along a first direction in the second display area.
Abstract:
An organic light emitting diode display includes a substrate, a semiconductor layer on the substrate, the semiconductor layer including a doped area and an undoped area, a first insulation layer that covers the semiconductor layer, a first conductor on the first insulation layer, a second insulation layer that covers the first conductor, a second conductor on the second insulation layer, a third insulation layer that covers the second conductor, and a third conductor on the third insulation layer, wherein, in the semiconductor layer that overlaps the first conductor, the doped area is between undoped areas.
Abstract:
A display device includes a substrate including a first display area and a second display area. The first display area includes first pixel areas, each including one or more first pixels. The second display area includes second pixel areas including one or more second pixels and a light transmittance area having a higher light transmittance than the second pixel area. The first and second display areas include a common electrode that transmits a constant common voltage. The common electrode in the second display area includes patterned regions that correspond to a first light transmittance area included in the light transmittance area. A thickness of the common electrode in the patterned regions is smaller than a thickness of the common electrode in a region other than the patterned regions or equals zero. The patterned regions and the second pixel areas extend alternately along a first direction in the second display area.
Abstract:
A display device includes: a substrate: a first electrode and a second electrode disposed on the substrate and facing each other; an emission layer disposed between the first electrode and the second electrode; a common voltage line disposed on the substrate and connected to the second electrode to transmit a common voltage; a thin film encapsulation layer covering the second electrode; auxiliary wiring disposed on the thin film encapsulation layer and connected to the common voltage line; a covering layer covering the auxiliary wiring; and a touch panel disposed on the covering layer. Thus, a voltage drop of the common voltage ELVSS may be minimized, and the luminance uniformity may be improved.
Abstract:
A liquid crystal display includes a first substrate facing a second substrate, a liquid crystal layer disposed between the first substrate and the second substrate, a first field generating electrode on the first substrate, and a second field generating electrode on the first substrate and including a plurality of branch electrodes overlapped with the first field generating electrode. The second field generating electrode includes a wing connected to an end of a first branch electrode positioned at an outermost side the plurality of branch electrodes.