Abstract:
A method of a first base station in a communication system and an apparatus therefor are provided. The method includes determining an addition mode configured to add a second base station, identifying whether to add the second base station based on the addition mode, and performing a procedure of adding the second base station based on the second base station being identified as being added. The addition mode may indicate one of a combination of at least one of a blind addition, a traffic criterion addition and a measurement report criterion addition. The method may be applied to intelligent services (e.g., smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail business, security and safety-related service) based on the 5th generation (5G) communication technology and Internet of Things (IoT)-related technology. The method and apparatus propose a connection management method in a dual connectivity system.
Abstract:
Disclosed are a communication technique of merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system, and a system therefor. The disclosure can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, health care, digital education, retail, security and safety related services, and the like) on the basis of 5G communication technology and IoT related technology. According to one embodiment of the present invention, a communication method of a base station comprises the steps of: determining an RRC state transition condition of a terminal; and transmitting information on the RRC state transition condition to the terminal, wherein the RRC state transition condition can include at least one timer for the transition between RRC states and/or information indicating an RRC state to be changed.
Abstract:
The present invention relates to a communication technique for converging a 5G communication system for supporting a higher data rate beyond a 4G system with an IoT technology, and a system therefor. The present invention may be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security and safety-related service, and the like) on the basis of a 5G communication technology and an IoT-related technology. A communication method for a terminal according to an embodiment of the present invention may comprise the steps of: transmitting a RAT discovery request message to a base station through a CDCH; receiving, from the base station, a RAT discovery response message and system information associated with the RAT; and receiving, from the base station, a UE-specific configuration message through a resource area configured according to the system information.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A base station operation method in a wireless communication system, according to an embodiment of the present invention, comprises the steps of: determining, on the basis of channel information received from each of a plurality of terminals, power to be used by each of the plurality of terminals with respect to resources allocated to be overlaid and used by the plurality of terminals; and transmitting resource information, which comprises information about the determined power, to each of the plurality of terminals.
Abstract:
A method of a communication technique in which a fifth generation (5G) communication system for supporting more high data transmission rate after a fourth generation (4G) system converges with an internet of things (IoT) technology, and a system is provided. The present disclosure may be applied to intelligent services (e.g., a smart home, a smart building, a smart city, a smart car or a connected car, healthcare, digital education, a retail business, security and safety-related services, or the like) based on a 5G communication technology and an IoT-related technology. A terminal receives, from a base station, a first message including configuration information of at least one band, receive, from the base station, a second message for activating a band among the at least one band, and activate the band according to the second message, the configuration information including indication of the at least one band, and each band of the at least one band being part of a bandwidth.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present invention relates to a method by a base station in a mobile communication system, the method comprising the steps of: checking a channel state in an unlicensed band; determining a parameter for checking whether a channel is occupied, according to the channel state; and transmitting the determined parameter to a terminal.
Abstract:
A method, a user equipment, an eNB are provided for controlling DRX in a wireless communication system. A method includes receiving, from a master evolved Node B (MeNB), an indication that a Slave eNB (SeNB) is to be monitored; and monitoring the SeNB, in response to the indicator. The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE).
Abstract:
A method of supporting a Handover (HO) by a master evolved Node B (eNB) in a wireless communication system supporting dual connectivity of a User Equipment (UE) for the master eNB and a slave eNB is provided. The method includes when an HO of the UE to the slave eNB is determined, transmitting an HO request message to a target slave eNB, when a HO Ack message is received from the target slave eNB, transmitting an HO trigger request message including identification information of the target slave eNB to a source slave eNB, and when a resource release message is received from the target slave eNB, transmitting an HO success indicator to the source slave eNB.
Abstract:
The disclosure relates to a communication technique for convergence of an IoT technology and a 5G communication system for supporting a higher data transmission rate beyond a 4G system, and a system therefor. The disclosure can be applied to an intelligent service (for example, a smart home, a smart building, a smart city, a smart cart or connected car, health care, digital education, retail business, security and safety-related service, etc.) on the basis of a 5G communication technology and an IoT-related technology. The disclosure defines a mobility method for a terminal residing in a system in which transmission/reception points (TPRs), supporting solely some protocols among entire access stratum protocols comprising PHY, MAC, RLC, PDCP, and RRC, coexist in a wireless communication system. Specifically, the disclosure defines a method for dynamically changing, depending on determination by a base station, a beam and a transmission/reception point to be used for transmitting information to or receiving information from a terminal through a method in which a system using multiple beams notifies, in advance, of a measurement reference signal transmitted using transmission/reception points of different networks, to allow a terminal to select a required reception beam from a corresponding resource and measure beam information of each transmission/reception point, or a terminal transmits measured information as feedback in which each transmission/reception point is specified. Accordingly, the disclosure can provide a criterion of rapid and highly precise determination for changing a beam and a transmission/reception point and thus prevent a terminal from needlessly measuring and reporting, so as to achieve an effect of reduction in the power consumption of the terminal and reduction of delay in change of a transmission/reception point.
Abstract:
The disclosure relates to a 5th generation (5G) or pre-5G communication system for supporting a data transmission rate higher than 4th generation (4G) communication systems such as long term evolution (LTE). A method performed by a near-real time (RT) radio access network (RAN) intelligent controller (RIC) is provided. The method includes a step of receiving a RIC indication message from an E2 node, wherein the RIC indication message includes user equipment (UE)-related information, the UE-related information includes information for indicating the radio resource control (RRC) state, and the RRC state can be one from among a plurality of states including RRC connected, RRC inactive and RRC idle states.