Abstract:
A transmission resource in a time domain subframe is divided into a plurality of equal duration resource elements in a time and frequency domain, the plurality of resource elements are segregated into a plurality of resource regions, information to be transmitted is modulated to generate a sequence of modulation symbols at a transmitter, the sequence of modulation symbols is mapped into the plurality of resource elements in the plurality of resource regions, and the modulation symbols are transmitted via a plurality of antennas using the respective corresponding resource elements to a receiver. The mapping of the modulation symbols in at least one resource region is independent of a certain control channel information that is carried in the time domain subframe, and the mapping of the modulation symbols in at least another resource region is dependent upon that certain control channel information.
Abstract:
Asynchronous Hybrid Automatic Repeat reQuest (ARQ) process identities are transmitted in a wireless communication system. A linking scheme is established between at least two sets of process identities of two respective corresponding codewords. When a first process identity is selected from among a first set of process identities of a first codeword, a second process identity may be derived in dependence upon the first process identity and the established linking scheme. Finally, a first packet from the first codeword is transmitted using a first transmission channel indicated by the first process identity, and a second packet is transmitted from the second codeword using a second transmission channel indicated by the second process identity. In addition, a control message including only the first process identity is transmitted.
Abstract:
Resource elements from multiple code blocks are separated into different groups, and the code bits of the resource elements within each group are decoded without waiting for a completed reception of a transport block to start decoding. Coded bits from multiple code blocks are similarly separated into different groups, and code blocks containing coded bits within each group are decoded. A first CRC is attached to the transport block and a second CRC is attached to at least one code block from the transport block. An improved channel interleaver maps coded bits of different code blocks to modulation symbols, and maps modulation symbols to time, frequency, and spatial resources, to make sure each code block receives approximately the same level of protection.
Abstract:
Time, frequency and spatial processing parameters for communications between a base station and a mobile station are selected by transmitting synchronization signals in multiple slices of a wireless transmission sector for the base station, and receiving feedback from the mobile station of at least one preferred slice of the multiple slices. In response to selection of one of the slices as an active slice for communications between the base station and the mobile station, reference signals are transmitted in the selected active slice using a corresponding selected precoder and/or codebook. The mobile station estimates and feeds back channel state information (CSI) based on those reference signals, and the CSI is then employed to determine communication parameters for communications between the base station and mobile station that are specific to the mobile station.
Abstract:
A mobile station performs a method for random access in a wireless network. The method includes receiving, from a base station, information regarding a configuration of at least one receive beam of the base station to receive a random access signal. The method also includes configuring at least one transmit beam for a transmission of the random access signal based on the configuration information from the base station. The method further includes transmitting the random access signal to the base station on the at least one transmit beam.
Abstract:
A user equipment (UE) performs a method for supporting discontinuous receive (DRX) in a wireless network. The method includes waking up at a wake up time associated with a beginning of a DRX cycle, the DRX cycle comprising a plurality of subframes. The method also includes determining whether to perform receive beam training before a beginning of a time period for downlink communication. The method further includes receiving data during the time period for downlink communication.
Abstract:
A base station transmits energy related information to a mobile station, wherein the energy related information is related to at least one of an energy harvester module and an energy storage module coupled to the base station. The energy related information includes: an energy level and a maximum storage capacity of the energy storage module; an energy harvest rate and energy consumption rate. The base station and the mobile station perform energy trade off, where when the serving base station has an energy level below a threshold, the mobile station uses certain configuration to send information to the serving base station where the configuration can use more resources, such as RF chains, thereby increasing energy consumption of the mobile station while enabling the base station to conserve energy.
Abstract:
A method and apparatus are provided for allocating code resources to ACK/NACK channel indexes, when UEs need ACK/NACK transmission in a wireless communication system in which a predetermined number of orthogonal cover Walsh codes is selected from among available orthogonal cover Walsh codes, at least one subset is formed, having the selected orthogonal cover Walsh codes arranged in an ascending order of cross interference, subsets are selected for use in first and second slots of a subframe, and the orthogonal cover Walsh codes of the subset selected for each slot and ZC sequence cyclic shift values are allocated to the ACK/NACK channel indexes.
Abstract:
Methods and apparatus for transmitting power setting information in a downlink Physical Downlink Shared Channel (PDSCH) in a communication system. In this communication system, a plurality of methods for calculating traffic-to-pilot ratios (T2P) are established. In addition, a mapping scheme between a plurality of overhead signals and a plurality of reference signal (RS) overhead ratios, ηRS, and the plurality of T2P calculation methods is established. A user-specific T2P ratio PB, k/PRS for certain OFDM symbols, a RS overhead ratio ηRS and a calculation method selected from the plurality of T2P calculation methods are assigned to a wireless terminal. Then, an overhead signal corresponding to both of the assigned RS overhead ratio ηRS and the assigned T2P calculation method is selected in accordance with the mapping scheme and is transmitted to the wireless terminal. In addition, the user-specific traffic-to-pilot ratio PB, k/PRS is transmitted to the wireless terminal. The wireless terminal may calculate the traffic-to-pilot ratios across different transmission antennas and different OFDM symbols in dependence upon the received traffic-to-pilot ratio PB, k/PRS, and the RS overhead ratio and the T2P calculation method indicated by the RS overhead signal.
Abstract:
A system includes a base station configured to communicate with a plurality of mobile stations. The base station transmits downlink timing synchronization and establishes frequency synchronization with at least one of the plurality of mobile stations. The base station receives, from the mobile station, at least one of: coarse sounding reference signal (SRS), and fine SRS. The base processes at least one of the coarse SRS to enable tracking of the preferred uplink (UL) slice for uplink transmissions, and the fine SRS in order to resolve a short-term small-scale channel state information (CSI), estimate a CSI from at least one of the coarse SRS and fine SRS, and perform uplink scheduling and grant. The mobile station performs uplink scheduling request and uplink data communication.