Abstract:
A novel display device or the like in which a transistor connected to a scan line has small gate capacitance is provided. A novel display device or the like in which a scan line has low resistance is provided. A novel display device or the like in which pixels can be arranged with high density is provided. A novel display device or the like that can be manufactured without an increase in cost is provided. In a transistor including a first gate electrode and a second gate electrode, the first gate electrode is formed using a metal material with low resistance and the second gate electrode is formed using a metal oxide material that can reduce oxygen vacancies in an oxide semiconductor layer. The first gate electrode is connected to the scan line, and the second gate electrode is connected to a wiring to which a constant potential is supplied.
Abstract:
A display device whose power consumption can be reduced is provided. Alternatively, the aperture ratio of a display device is increased. The display device includes a pixel having a first subpixel and a second subpixel. The first subpixel includes a first coloring layer and a first transistor, and the second subpixel includes a second coloring layer and a second transistor. At least regions where channels might be formed in semiconductor layers of the first and second transistors are positioned to overlap with the first coloring layer. The first coloring layer is likely to absorb light with a shorter wavelength than light absorbed by the second coloring layer. The semiconductor layers, electrodes, wirings, and the like included in the transistors transmit visible light.
Abstract:
Provided is an electronic device with high portability, a highly browsable electronic device, or an electronic device having a novel light source that can be used in shooting photographs and video. The electronic device includes a camera and a flexible display portion. The display portion has a first region and a second region. The first region has a function of emitting light to a photographic subject. The second region has a function of displaying an image of the photographic subject shot by the camera. The display portion can be bent so that the first region and the second region face in different directions.
Abstract:
To provide a thin touch panel, a touch panel with high visibility, a lightweight touch panel, or a touch panel with low power consumption. A pair of conductive layers is included in a capacitive touch sensor. The two conductive layers have a mesh shape including a plurality of openings. Furthermore, the conductive layers are provided to overlap with a region between two display elements in a plan view. Furthermore, the conductive layers included in the touch sensor are provided between two substrates included in the touch panel, and a conductive layer capable of supplying a constant potential is provided between a circuit which drives a display element and the pair of conductive layers.
Abstract:
A semiconductor device including a plurality of pixels over a substrate and a display medium including an electronic ink over the substrate, in which at least one pixel of the plurality of pixels comprises first and second subpixels each of which comprises a transistor that comprises an oxide semiconductor including indium, and in which one image of at least one of the plurality of pixels is displayed by a plurality of signals, is provided.
Abstract:
To suppress variation of a signal in a semiconductor device. By suppressing the variation, formation of a stripe pattern in displaying an image on a semiconductor device can be suppressed, for example. A distance between two adjacent signal lines which go into a floating state in different periods (G1) is longer than a distance between two adjacent signal lines which go into a floating state in the same period (G0, G2). Consequently, variation in potential of a signal line due to capacitive coupling can be suppressed. For example, in the case where the signal line is a source signal line in an active matrix display device, formation of a stripe pattern in a displayed image can be suppressed.
Abstract:
A display apparatus with high luminance and a long lifetime is provided. The display apparatus includes a first layer and a second layer positioned above the first layer. The first layer includes a substrate and a plurality of driver circuit regions, and the second layer includes a plurality of display regions. The substrate is a glass substrate. Each of the plurality of driver circuit regions includes a driver circuit, and the driver circuit includes a transistor including silicon in a channel formation region. Each of the plurality of display regions includes a pixel, and the pixel includes a light-emitting diode and a transistor including a metal oxide in a channel formation region. Specifically, the light-emitting diode is preferably a micro light-emitting diode. The driver circuit included in one of the plurality of driver circuit regions has a function of driving the display pixel included in one of the plurality of display regions.
Abstract:
A display device with a narrower frame can be provided. In the display device, a first layer, a second layer, and a third layer are provided to be stacked. The first layer includes a gate driver circuit and a data driver circuit, the second layer includes a demultiplexer circuit, and the third layer includes a display portion. In the display portion, pixels are arranged in a matrix, an input terminal of the demultiplexer circuit is electrically connected to the data driver circuit, and an output terminal of the demultiplexer circuit is electrically connected to some of the pixels. The gate driver circuit and the data driver circuit are provided to include a region overlapping some of the pixels. The gate driver circuit and the data driver circuit have a region where they are not strictly separated from each other and overlap each other. Five or more gate driver circuits and five or more data driver circuits can be provided.
Abstract:
A high-definition display apparatus with a large diagonal size is provided. The display apparatus includes a first layer and a second layer positioned above the first layer. The first layer includes a substrate and a plurality of circuit regions, and the second layer includes a plurality of display regions. The substrate is a glass substrate. Each of the plurality of circuit regions includes a driver circuit, and the driver circuit includes a transistor including low-temperature polysilicon in a channel formation region. Each of the plurality of display regions includes a display pixel, and the display pixel includes a light-emitting device and a transistor including a metal oxide in a channel formation region. The driver circuit included in one of the plurality of circuit regions has a function of driving the display pixel included in one of the plurality of display region.
Abstract:
A high-definition display apparatus is provided. A display apparatus with low power consumption is provided. A display apparatus with high luminance is provided. A display apparatus with a high aperture ratio is provided. The display apparatus includes a first wiring, a second wiring, a third wiring, and a pixel electrode. The first wiring extends in a first direction and is supplied with a source signal. The second wiring extends in a second direction intersecting with the first direction and is supplied with a gate signal. A constant potential is applied to the third wiring. In addition, the first wiring and the pixel electrode are provided to overlap with each other with the third wiring therebetween. An insulating layer includes a portion in contact with part of a top surface of the pixel electrode and a portion in contact with a side surface of the pixel electrode. An EL layer includes a first portion in contact with another part of the top surface of the pixel electrode and a second portion positioned over the insulating layer. The second portion includes a region whose thickness is half or less of thickness of the first portion.