Abstract:
A process and a system are disclosed for sorption heating and cooling which comprise at least 2 sorption zones. Each sorption zone comprises a heat transfer zone and an adsorption zone containing a sorbent such that the heat transfer zone is in intimate thermal contact with the adsorption zone to permit an essentially uniform temperature lengthwise through the sorption zone and thereby employ essentially all of the sorbent in the process at all times. The process comprises passing heat transfer streams such as a hot stream, a cold stream, and a recirculation stream through the heat transfer zone and routing a refrigerant through the adsorption zone of each sorption zone to affect a desorption stroke, an intermediate stroke and an adsorption stroke in the adsorption zone. Rotary and multi-port valves are employed to circulate the refrigerant and the heat transfer streams. The resulting sorption cooling process achieves a significantly higher coefficient of performance than the prior art.
Abstract:
A process and apparatus for the recovery and purification of a contaminated refrigerant withdrawn from a refrigeration or refrigerant recovery system which employs a compressor and an adsorbent selective for the adsorption of halogenated hydrocarbons. The adsorbent is selected from the group consisting of silicalite, faujasites, steamed and rare earth exchanged zeolite Y, mordenite, ZSM-5 and mixtures thereof, and more particularly the group consisting of a low cerium rare earth exchanged zeolite Y-84, a low cerium rare earth exchanged zeolite LZ-210, Breck Structure Six, ECR-32, and mixtures thereof. A significant increase in the capacity of these adsorbents over conventional adsorbents combined with the use of novel process steps to recover, purify and return a purified refrigerant to the refrigeration system result in significant cost savings at reduced risk of release of halogenated hydrocarbons to the environment.
Abstract:
A process for treating an engine exhaust gas stream is disclosed. The process involves arranging a catalyst bed and a molecular sieve bed side by side with a connecting pipe between and parallel to the two beds. When the engine is first started, the cool exhaust is flowed through the catalyst bed, then through the connecting pipe, then through the molecular sieve bed and finally discharged to the atmosphere. When the molecular sieve bed reaches a temperature of about 150.degree. C. to about 200.degree. C. the exhaust stream is diverted such that it is first flowed through the molecular sieve bed, to desorb the adsorbed hydrocarbons, and then through the catalyst bed and finally discharged to the atmosphere. Finally, when all the hydrocarbons are desorbed from the molecular sieve bed, the exhaust stream is diverted such that it is flowed through the catalyst bed and then discharged to the atmosphere.
Abstract:
Layered adsorbent-substrate tubes are prepared by a method comprising heating the surface of an aluminum substrate, contacting the surface of the substrate with a slurry containing the adsorbent and a binder, and heating the coatings to form hardened surfaces which can have excellent adsorption and mechanical properties in devices for cooling or heating by adsorption of refrigerating fluid on a solid adsorbent.
Abstract:
This invention relates to a process for treating an engine exhaust gas stream. The process involves first flowing the engine exhaust stream, which is relatively cool, over an adsorbent zone which comprises an adsorbent bed, i.e., a molecular sieve bed, capable of preferentially adsorbing pollutants such as hydrocarbons. This provides a first exhaust stream which is flowed over a primary castalyst which converts the pollutants to innocuous compounds and then discharging the resultant treated exhaust stream to the atmosphere. When the adsorbent bed reaches a temperature of about 150.degree. C., the entire engine exhaust stream is completely diverted over the primary catalyst. When the inlet temperature to the primary catalyst has reached about 350.degree. C., a minor portion of the engine exhaust stream is diverted over the adsorbent bed to desorb the pollutants adsorbed on the bed and carry them over the primary catalyst where they are converted to innocuous components. After a certain amount of time, the entire engine exhaust stream is again diverted over the primary catalyst, thereby isolating the adsorbent bed to minimize deterioration. The adsorbent zone may also have a secondary catalyst bed arranged immediately after it.
Abstract:
The present invention provides a process for applying a coating on a heat exchanger or a temperature controlled adsorber surface. This coating comprises a zeolite, an organic solvent, an organic siloxane resin that constitutes a binder and a plasticizing agent.
Abstract:
Systems and processes for dehydration of a process stream in the production of motor fuel grade ethanol (MFGE) can include temperature controlled adsorption of water in the process stream, and heat pumping of the associated heat of adsorption. The process can include providing a process stream (110) including ethanol and water to a first temperature controlled adsorber (102) where water is removed by adsorption to produce an MFGE product stream (114) and an associated heat of adsorption. A cooling fluid can be provided to the first temperature controlled adsorber (102) to remove heat of adsorption and produce a heated cooling fluid (120). Heat from the heated cooling fluid can be provided to a heat sink.
Abstract:
Systems and processes for dehydration of a process stream in the production of motor fuel grade ethanol (MFGE) can include temperature controlled adsorption of water in the process stream, and heat pumping of the associated heat of adsorption. The process can include providing a process stream (110) including ethanol and water to a first temperature controlled adsorber (102) where water is removed by adsorption to produce an MFGE product stream (114) and an associated heat of adsorption. A cooling fluid can be provided to the first temperature controlled adsorber (102) to remove heat of adsorption and produce a heated cooling fluid (120). Heat from the heated cooling fluid can be provided to a heat sink.
Abstract:
Using a high pressure rotary adsorbent wheel, a high value compressed gas feed can be purified by concentrating the impurity such as water, condensing it out, before final purification. Instead of exhausting gas from the system, the effluent can be put back into the feed at a point prior to condensation of the high value gas feed, and therefore the entire feed is purified without any high value gas feed going into a waste stream.
Abstract:
An apparatus is presented for separating chemicals using adsorption separation methods. The apparatus uses a plurality of adsorption units holding adsorbent, where the adsorption units are serially connected and are moved to shift the relative position of the feeds and drawoffs to the apparatus.