摘要:
A combined multiplexer/demultiplexer for use in optical communication systems is disclosed. The combined multiplexer/demultiplexer includes a plurality of waveguide arrays and a plurality of signal carriers, each disposed substantially symmetrically about an optical axis of the device. In operation, a signal carrier emits a multiple wavelength optical signal that is received and directed to a dispersion apparatus by a light focusing device. The dispersion apparatus diffracts the optical signal into selected spectral components and reflects the spectral components back to the waveguide arrays through the light focusing device. The signal processing, such as multiplexing and demultiplexing, performed by each waveguide array depends on their configuration. The waveguide arrays may be configured to substantially simultaneously multiplex and/or demultiplex the spectral components.
摘要:
An active device for dynamic control of lightwave transmission properties has at least one photonic crystal waveguide that has anti-reflection photonic crystal waveguides with gradually changed group refractive indices at both input and output side. An alternating voltage or current signal applied to two electrically conductive regions changes the refractive indices of the photonic crystal materials, introducing a certain degree of blue-shift or red-shift of the transmission spectrum of the photonic crystal waveguide. The output lightwave with frequency close to the band-edge of the photonic crystal waveguide is controlled by the input electric signal. Devices having one or more such active photonic crystal waveguides may be utilized as an electro-optic modulator, an optical switch, or a tunable optical filter.
摘要:
The present invention provides an optical apparatus having a multimode interference coupler configured to optically couple a strip waveguide to a slot photonic crystal waveguide. The multimode interference coupler has a coupling efficiency to the slot photonic crystal waveguide greater than or equal to 90%, a width that is approximately equal to a defect width of the slot photonic crystal waveguide, a length that is equal to or less than 1.5 μm, and interfaces with the slot photonic crystal waveguide at an edge of a period that gives a termination parameter of approximately zero. The optical apparatus may also include an insulation gap disposed between the multimode interference coupler and the slot photonic crystal waveguide, wherein the length of the multimode interference coupler is reduced by approximately one half of a width of the insulation gap.
摘要:
An optical switch which uses internal reflection at a junction formed by two waveguides is discussed. The waveguides may be formed from various materials such as polymers and other combinations of monomers. Substantially total internal reflection may be produced at the junction between the two waveguides in response to heating from a thin film electrode.
摘要:
The present invention relates to the transmission of optical signals, and more particularly to wavelength division multiplexers and demultiplexers for optical signals. A wavelength division multiplexer device for use in an optical transmission system comprises a light input, one or more lenses, a substrate, one or more holographic optical elements, and two or more light outputs. The light input, the substrate, and the one or more lenses direct a light beam through the device. The one or more holographic optical elements act as transmission diffraction gratings and spatially separate the input light beam into dispersed light beams. Each light output receives one of the dispersed light beams. Multiple holographic optical elements may be stacked upon one another or separated by a substrate. Additionally, the substrate may comprise edges or parts that are beveled. Finally, the elements of the present invention may be rigidly coupled to each other, without intervening air space.
摘要:
A planarized signal communications system (110) embedded within a printed circuit board (102) is disclosed, comprising first (118) and second (120) index buffer layers within the printed circuit board, a polymer waveguide (116) disposed below the first and above the second index buffer layers, an electrical-to-optical transmitter (122) disposed within the first index buffer layer in direct adjoinment with the polymer waveguide, a reflective element (126) disposed within the polymer waveguide in direct alignment with the electrical-to-optical transmitter and adapted to reflect optical energy from the electrical-to-optical transmitter along the polymer waveguide, an optical-to-electrical receiver (124) disposed within the first index buffer layer and in direct adjoinment with the polymer waveguide, a reflective element (126) disposed within the polymer waveguide in direct alignment with the optical-to-electrical receiver and adapted to reflect optical energy from within the polymer waveguide to the optical-to-electrical receiver, and an at least partially metal layer (128) within the printed circuit board fabricated to provide electrical coupling between the electrical-to-optical transmitter and a surface (108) of the printed circuit board and between the optical-to-electrical receiver and the surface of the printed circuit board.
摘要:
A method for fabricating an M×N, P-bit phased-array antenna on a flexible substrate is disclosed. The method comprising ink jet printing and hardening alignment marks, antenna elements, transmission lines, switches, an RF coupler, and multilayer interconnections onto the flexible substrate. The substrate of the M×N, P-bit phased-array antenna may comprise an integrated control circuit of printed electronic components such as, photovoltaic cells, batteries, resistors, capacitors, etc. Other embodiments are described and claimed.
摘要:
A fully additive method for forming optical waveguides and devices, such as thermo-optic polymer switches and electro-optic polymer modulators, is disclosed. A first polymer material of refractive index N1 is coated onto a suitable substrate to form a first cladding layer. The first cladding is then selectively patterned using a mold to form an impression of the waveguide core into the first cladding layer. Next, a core layer is formed by ink-jet printing onto the imprinted first cladding layer with a core material of refractive index N2 (N2>N1). The core layer is subsequently coated by ink-jet printing with a second polymer material of refractive index N3 (N3
摘要:
A fully additive method for forming multilayer electrical interconnects for printed electronic and/or optoelectronic devices is disclosed. Electrical interconnects are fabricated by directly ink-jet printing a dielectric material with selective interconnection holes, and then ink jet printing conductive patterns and filling the interconnection holes with conductive material to form multilayer interconnects. A method for manufacturing a multilayer printed electronic system utilizing the invention is also disclosed. Other embodiments are described and claimed.
摘要:
The present invention provides a system, method and apparatus for improved electrical-to-optical transmitters (100) disposed within printed circuit boards (104). The heat sink (110, 200) is a thermal conductive material disposed within a cavity (102) of the printed circuit board (104) and is thermally coupled to a bottom surface (112) of the electrical-to-optical transmitter (100). A portion of the thermal conductive material extends approximately to an outer surface (120, 122 or 124) of a layer (114, 116 or 118) of the printed circuit board (104). The printed circuit board may comprise a planarized signal communications system or an optoelectronic signal communications system. In addition, the present invention provides a method for fabricating the heat sink wherein the electrical-to-optical transmitter disposed within a cavity of the printed circuit board is fabricated. New methods for flexible waveguides and micro-mirror couplers are also provided.