Abstract:
The present invention relates to the transmission of optical signals, and more particularly to wavelength division multiplexers and demultiplexers for optical signals. A wavelength division multiplexer device for use in an optical transmission system comprises a light input, one or more lenses, a substrate, one or more holographic optical elements, and two or more light outputs. The light input, the substrate, and the one or more lenses direct a light beam through the device. The one or more holographic optical elements act as transmission diffraction gratings and spatially separate the input light beam into dispersed light beams. Each light output receives one of the dispersed light beams. Multiple holographic optical elements may be stacked upon one another or separated by a substrate. Additionally, the substrate may comprise edges or parts that are beveled. Finally, the elements of the present invention may be rigidly coupled to each other, without intervening air space.
Abstract:
Apparatuses for communication or sensing are disclosed, the apparatuses comprising a substrate; a bottom cladding disposed on the substrate; a device layer disposed on the bottom cladding, wherein the device layer comprises: two substantially parallel rails extending from an input side to an output side of the device layer and configured to form a slot between the two substantially parallel rails, wherein each of the two substantially parallel rails comprises an inner edge adjacent to the slot and an outer edge opposite the slot; and one or more teeth coupled to each of the two substantially parallel rails; and a top cladding disposed onto the device layer and bottom cladding; wherein the bottom cladding, the device layer, and the top cladding are configured to support at least one optical guided mode. Other embodiments are described and claimed.
Abstract:
A method for reducing loss in a subwavelength photonic crystal waveguide bend is disclosed. The method comprising: forming the subwavelength photonic crystal waveguide bend with a series of trapezoidal shaped dielectric pillars centered about a bend radius; wherein each of the trapezoidal shaped dielectric pillars comprise a top width, a bottom width, and a trapezoid height; wherein the length of the bottom width is greater than the length of the top width; and wherein the bottom width is closer to the center of the bend radius of the subwavelength photonic crystal waveguide bend than the top width. Other embodiments are described and claimed.
Abstract:
Systems and methods for chip-integrated label-free detection and absorption spectroscopy with high throughput, sensitivity, and specificity are disclosed. The invention comprises packaged chips for multiplexing photonic crystal microcavity waveguide and photonic crystal slot waveguide devices. The packaged chips comprise crossing waveguides to prevent leakage of fluids from the microfluidic channels from the trenches or voids around the light guiding waveguides. Other embodiments are described and claimed.
Abstract:
Methods and systems for a label-free on-chip optical absorption spectrometer consisting of a photonic crystal slot waveguide are disclosed. The invention comprises an on-chip integrated optical absorption spectroscopy device that combines the slow light effect in photonic crystal waveguide and optical field enhancement in a slot waveguide and enables detection and identification of multiple analytes to be performed simultaneously using optical absorption techniques leading to a device for chemical and biological sensing, trace detection, and identification via unique analyte absorption spectral signatures. Other embodiments are described and claimed.
Abstract:
Methods and systems for a label-free on-chip optical absorption spectrometer consisting of a photonic crystal slot waveguide are disclosed. The invention comprises an on-chip integrated optical absorption spectroscopy device that combines the slow light effect in photonic crystal waveguide and optical field enhancement in a slot waveguide and enables detection and identification of multiple analytes to be performed simultaneously using optical absorption techniques leading to a device for chemical and biological sensing, trace detection, and identification via unique analyte absorption spectral signatures. Other embodiments are described and claimed.
Abstract:
The present invention provides an optical apparatus having a multimode interference coupler configured to optically couple a strip waveguide to a slot photonic crystal waveguide. The multimode interference coupler has a coupling efficiency to the slot photonic crystal waveguide greater than or equal to 90%, a width that is approximately equal to a defect width of the slot photonic crystal waveguide, a length that is equal to or less than 1.5 μm, and interfaces with the slot photonic crystal waveguide at an edge of a period that gives a termination parameter of approximately zero. The optical apparatus may also include an insulation gap disposed between the multimode interference coupler and the slot photonic crystal waveguide, wherein the length of the multimode interference coupler is reduced by approximately one half of a width of the insulation gap.
Abstract:
The present invention provides a system, method and apparatus for improved electrical-to-optical transmitters (100) disposed within printed circuit boards (104). The heat sink (110, 200) is a thermal conductive material disposed within a cavity (102) of the printed circuit board (104) and is thermally coupled to a bottom surface (112) of the electrical-to-optical transmitter (100). A portion of the thermal conductive material extends approximately to an outer surface (120, 122 or 124) of a layer (114, 116 or 118) of the printed circuit board (104). The printed circuit board may comprise a planarized signal communications system or an optoelectronic signal communications system. In addition, the present invention provides a method for fabricating the heat sink wherein the electrical-to-optical transmitter disposed within a cavity of the printed circuit board is fabricated. New methods for flexible waveguides and micro-mirror couplers are also provided.
Abstract:
The present invention provides a system, method and apparatus for improved electrical-to-optical transmitters (100) disposed within printed circuit boards (104). The heat sink (110, 200) is a thermal conductive material disposed within a cavity (102) of the printed circuit board (104) and is thermally coupled to a bottom surface (112) of the electrical-to-optical transmitter (100). A portion of the thermal conductive material extends approximately to an outer surface (120, 122 or 124) of a layer (114, 116 or 118) of the printed circuit board (104). The printed circuit board may comprise a planarized signal communications system or an optoelectronic signal communications system. In addition, the present invention provides a method for fabricating the heat sink wherein the electrical-to-optical transmitter disposed within a cavity of the printed circuit board is fabricated. New methods for flexible waveguides and micro-mirror couplers are also provided.
Abstract:
A combined multiplexer/demultiplexer for use in optical communication systems is disclosed. The combined multiplexer/demultiplexer includes a plurality of waveguide arrays and a plurality of signal carriers, each disposed substantially symmetrically about an optical axis of the device. In operation, a signal carrier emits a multiple wavelength optical signal that is received and directed to a dispersion apparatus by a light focusing device. The dispersion apparatus diffracts the optical signal into selected spectral components and reflects the spectral components back to the waveguide arrays through the light focusing device. The signal processing, such as multiplexing and demultiplexing, performed by each waveguide array depends on their configuration. The waveguide arrays may be configured to substantially simultaneously multiplex and/or demultiplex the spectral components.