Abstract:
A Method for increasing coverage and robustness against frequency offsets in wireless networks, user device and computer program productsIn the method, a user device (171) that wirelessly communicates with a base station (172) through a wireless network employing a Single Carrier-Frequency Division Multiple Access, SC-FDMA, comprises: applying a number of calculated repetitions of a block of complex information symbols prior to a SC-FDMA modulator (176), said number of repetitions being an integer submultiple of a number of subcarriers scheduled for uplink transmission according to the expression: NscUL=L×M with L and M integers; and applying, when mapping to scheduled resources in the SC-FDMA modulator (176), a frequency shift equal to a subcarrier width multiplied by one half of said number of repetitions.
Abstract:
The method includes: performing a packet scheduling for a plurality of user terminals (UEs) based on information regarding QoS classes, the information regarding QoS classes is included in QoS class identifiers received from an Evolved Packet Core providing communication services to the user terminals. The method further includes receiving channel quality indicators from the plurality of user terminals and performing the scheduling also on the basis of the received channel quality indicators. The system of the invention is arranged to implement the method of the invention.
Abstract:
A system, method and device for error detection/estimation in OFDM communications systems is proposed. The disclosed mechanism allows an efficient error prediction in a received data block (e.g. a packet) without using error detection codes that may impair spectral efficiency (due to the overhead) especially when very small size packets are used. In order to do that, it generates a decision variable with the aim to check whether a received block has errors or not, without resorting to the use of error-detection codes.
Abstract:
A method and a system for channel state information (CSI) reporting in LTE networks according to the mobility of user equipment. The method includes user equipment (UE) transmitting to an LTE cellular base station (eNodeB), a CSI report containing quality information including CQI, PMI and RI indicators on an uplink radio channel in a periodic manner using a physical uplink shared channel (PUSCH), the CSI reporting activated based on a low mobility estimation of the UE and including a first CSI report type containing CSI information in DWT form of the channel impulse responses and average CQI indications for the codewords in use, being some of the DWT coefficients admissible to be discarded for increased compression; and a second CSI report type containing differences in coefficients of the DWT for each channel impulse responses, and differences in the average of CQI values. The system is adapted to implement the method.