Abstract:
A method and system for optimizing the performance of spatial multiplexing techniques in MU-MIMO wireless systems comprising subsectors where the presence of significant correlation between antenna elements can impair the performance of MU-MIMO techniques. The proposed solution ensures optimum selection of a specific combination of transmit antenna elements and receive antenna elements that maximizes MU-MIMO performance.
Abstract:
Method and system to dynamically associate spatial layers to beams in a FWA network operating in the millimeter-wave frequency range. A base station and a CPE are willing to wirelessly transmit and receive data through a wireless channel of the FWA network, the base station having beamforming capabilities henceforth generating multiple wireless beams. The base station performs all baseband wireless functions related for creating, keeping and managing the connections between the base station and the CPE at baseband level, wherein information is handled in the form of up to M spatial layer signals, and with no built-in capabilities for creation, detection or management of the beams. The base station also performs all necessary RF functions at millimeter-wave frequencies, including beamforming and conversion from complex baseband signals to RF signals and vice versa, and also couples the RF signals to the wireless channel.
Abstract:
A system, method and device to overcome the effects of mobility in OFDM wireless cellular networks. Individual beams are isolated and Doppler impairments are compensated so the constituent beams can reach the users in DL with ideally no Doppler impairments. Similarly in UL the signals corresponding to the different spatial beams are detected and their Doppler impairments compensated.
Abstract:
The method comprising passing, a base station or a user terminal, information comprising data signals and encoding, a first and a second turbo encoders, said received data signals, generating two different turbo code blocks comprising a set of systematic and parity bits. Where, in order to enhance detection the two different turbo code blocks are simultaneously transmitted through a wireless OFDM system and wherein the data signals to be encoded by said second turbo encoder are interleaved prior encoding by an external bit interleaver.The system of the invention is arranged to implement the method of the invention.
Abstract:
Methods, a base station and computer programs for performing multiple access in wireless OFDM cellular systems over multipath wireless channels considering both space and frequency domains,The base station 100 comprises a large number of antennas 103 in the form of a two-dimensional array and transmits a given number of signals to a number of users 106, so that each one receives its intended signal (or set of intended signals) without interference to/from the other users 106. The base station 100 includes a scheduler in space-time-frequency dimensions 101 as well as an orthogonal space-frequency processing technique 102 for addressing the users 106. The cellular scenario is assumed where the wireless channel 105 presents significant multipath, thereby resulting in multiple signal components being received by each user 106. Orthogonality of the beams is achieved upon transmission by properly discretizing the spatial domain, while inter-user interference is avoided by exciting only those beams that result in multipath components received by one single user 106.
Abstract:
A system and method are provided for assisting user devices in performing OFDMA downlink interference cancellation, in which an interfering base station transmits a downlink signal in a first slot and a second slot, both slots including cell reference signals (CRSs) for physical channel estimation, the CRS of the second slot is modified to indicate encoded values of parameters characterizing the physical channel according to an encoding procedure, the slots are received by a served user device that detects the physical channel parameters carried by dedicated control signalling and encodes them by the encoding procedure, an unchanged CRS is reconstructed, and the slots are received by an interfered user device obtaining the encoded values and comparing to parameter patterns indicating absence of modifications in the CRSs, wherein if the encoded values are different from the patterns, the interfered user device decodes them to perform interference cancellation of the downlink signal.
Abstract:
The method comprising at least one wireless user terminal, UE, connected through a wireless network to a serving base station and a plurality of network cells, each one comprising a base station, said at least one wireless UE: estimating the cell loads of the serving base station and of the plurality of network cells by analysing a downlink air interface load; providing to said wireless network, information about the actual cell load estimation of said plurality of cells, and performing a network cell selection based on said estimated cell loads, wherein said cell selection is performed without any exchange of cell load between said plurality of network cells.
Abstract:
A method to provide robustness against noise and interference in wireless communications, a transmitter and computer program products, involving sending to a receiver (13), through a wireless channel (12), information using a constant-envelope waveform with complex baseband representation of the form s[n]=Ac exp{jϕ[n]}. The phase ϕ[n] following the expression ( ϕ [ n ] - ϕ [ n - 1 ] ) = 2 π m · ∑ k = k 0 + 1 k 0 + N a , F M + - 1 x [ k ] exp ( j 2 π kn N ) , and the wireless channel has an Additive White Gaussian Noise component and flat-fading conditions, wherein the transmitter (110) calculates a FFT length, N, and a number of active positive subcarriers, Na,FM+, needed in order to have a given improvement in the signal to noise ratio at the active positive subcarriers of the instantaneous frequency spectrum containing the information; calculates a cutoff subcarrier k0 needed to overcome Doppler, phase noise and carrier frequency offset impairments at the receiver side, and generates a complex baseband signal waveform of the form s[n]=Ac exp{jϕ[n]} carrying information with the FFT length, number of active positive subcarriers and cutoff subcarrier.
Abstract:
A system, method and device for error detection/estimation in OFDM communications systems is proposed. The disclosed mechanism allows an efficient error prediction in a received data block (e.g. a packet) without using error detection codes that may impair spectral efficiency (due to the overhead) especially when very small size packets are used. In order to do that, it generates a decision variable with the aim to check whether a received block has errors or not, without resorting to the use of error-detection codes.
Abstract:
The method comprising a base station equipped with a large number of antennas according to a two-dimensional rectangular array and a number M of cell users, said rectangular array comprising N1 antenna elements along one axis with a regular spacing dx and N2 antenna elements along a perpendicular axis with a regular spacing dy, said users being characterized by angles (θ,φ) in a spherical coordinate system, where in order to achieve orthogonal multiple access the method comprises: selecting a grid spacing (Δu,Δv) in the (u, v) domain; discretizing the (u, v) domain; constructing a set of signals ST[k,l,f]; calculating time-domain excitations AT[n,m,t]for the antenna elements in the array given by coordinates (ndx,mdy) for generation of the downlink transmit signals; and obtaining the frequency contents SR[k,l,f] of the complex baseband signals received from the M users in the uplink.The system implements the method of the invention.