Abstract:
Modifications to the indenter probe tips and transducer, and proper selection of optics in an indentation system allow straight down optical viewing of the sample surface under the indentation tip by a microscope, by providing an optical path through the transducer from the sample surface under the tip to a microscope objective, thereby simplifying alignment of the tip to features on the sample.
Abstract:
A micromechanical assembly couples to a positioning member and to a body having an aerodynamic surface subject to aerodynamic forces. The micromechanical assembly comprises a substrate including a flexible beam joining a first substrate portion that is attachable to the positioning member to a second substrate portion that is attachable to the body. The substrate includes a substrate surface extending at least over the flexible beam. A lithographic pattern is formed on the substrate surface. The lithographic pattern includes at least a first impedance element that senses flexing of the flexible beam. Contact pads are coupled to the lithographic pattern for coupling to a flex measurement circuit.
Abstract:
A disc drive system includes a recording disc rotatable about an axis, a slider supporting a transducing head for transducing data with the disc, and a dual-stage actuation assembly supporting the slider to position the transducing head adjacent a selected radial track of the disc. The dual-stage actuation assembly includes a support structure supporting the slider in proximity to a surface of the disc, a microactuator and a capacitive position sensor. The support structure is coarsely positionable by a main actuator. The microactuator includes a stator attached to the support structure and a movable rotor operatively attached to the slider, the rotor being connected to the stator by at least one flexible beam. The capacitive position sensor connects the stator to the rotor, and provides a relative position signal representing a state of displacement of the microactuator.
Abstract:
A transducer assembly in which an electric current is passed through plating solution in recesses of a metal substrate to plate electrical contact bumps having bump fronts in the recesses and exposed bump backs. The transducer is partially formed on the substrate, sealing the exposed bump backs. One or more vacuum processes are performed to complete formation of the transducer. At least a portion of the metal substrate is etched away to expose the bump fronts of the electrical contact bumps.
Abstract:
A disc drive has a disc rotatable about an axis, a slider carrying a transducing head for transducing data with a disc, and a dual stage actuation assembly supporting the slider to position the transducing head adjacent a selected radial track of the disc. The dual stage actuation assembly includes a movable actuator arm and a suspension assembly supported by the actuator arm. The suspension assembly includes a gimbal. The dual stage actuation assembly further includes a microactuator. The microactuator includes a stator having a top surface and a bottom surface wherein the gimbal is connected to the top surface of the stator. A rotor is operatively connected to the stator and the rotor supports the slider. A magnetic keeper structure is supported by the stator such that the rotor moves with respect to the magnetic keeper structure.
Abstract:
To allow for adjusting the fly height of a read/write head carried by a slider, a shear transducer is added to the slider. The shear transducer comprises a layer of piezoelectric material added to the slider so that the portion of the slider carrying the read/write head can be moved when the shear transducer is sheared. To cause the shear transducer to shear, a voltage is applied across the piezoelectric layer. To control the movement of the transducer, a closed-loop control system is used. The control system senses the spacing between the read/write head and the disc surface, compares the sensed spacing to a desired spacing, and adjusts the voltage applied to the shear transducer to reduce the difference between the actual and desired spacing.
Abstract:
A microactuator for a disc drive includes a stator attached to the disc drive support structure, a rotor operatively attached to a slider, the rotor being movable with respect to the stator in a first horizontal plane generally parallel to the surface of the disc, and a vertically arranged magnetic circuit. The magnetic circuit is arranged in a plurality of planes substantially parallel to the first horizontal plane so as to move the microactuator rotor and the slider in the first horizontal plane with a stroke of at least 2 micro-meters in response to a current of no greater than 100 milli-Amps provided to the magnetic circuit.
Abstract:
Utilizing reactive ion etching (RIE) lag, tethers are fabricated that reliably hold devices in place during processing and storage, yet are easily broken to remove the parts from the wafer as desired, without requiring excessive force that could damage the devices. The tethers are fabricated by slightly narrowing the periphery etch feature at several places. By adjusting the ratio of the main periphery width to the necked width at the tethers, the final thickness of the tether can be controlled to a small fraction of the wafer thickness, so that tethers defined by readily achievable feature sizes will reliably hold the parts in place until removal is desired. Since the tethers are now only a fraction of the wafer thickness, they will reliably break to release the part at a force level that will not damage the part.
Abstract:
A force, weight or position sensor unit and sensor element incorporated into an apparatus for microindentation hardness testing and surface imaging which allows immediate imaging of the surface subsequent to hardness testing. The sensor uses a multi-capacitor system having drive and pick-up plates mounted on an appropriate suspension system to provide the desired relative motion when a force is applied to the pick-up plate. The output signal is run through a buffer amplifier and synchronously demodulated to produce a signal proportional to force or displacement. The sensor element is mounted on a scanning tunneling microscope base and a sample mounted on the sensor. The force sensor is used for both measuring the applied force during microindentation or micro hardness testing and for imaging before and after the testing to achieve an atomic force microscope type image of the surface topography before and after indentation testing.
Abstract:
An excitation circuit for a gas discharge lamp. The excitation circuit includes a rectifier for converting conventional line A.C. to D.C. The primary winding of a step up transformer and a switching element of an inverter circuit are connected in series across the output of the rectifier. The switching element is switched at a desired frequency, generating an A.C. signal across the primary winding of the transformer. The inverter circuit further includes a capacitor connected in parallel with the primary winding to provide a pseudo-resonant mode of operation in the primary winding when the switching element is off. Switching of the switching element is controlled by control circuitry, which responds to the voltage level at the interconnection of the primary winding and switching element for adjusting the relative on and off time of the switching element, controlling total current through the primary winding.