Abstract:
A device comprises a fluid bearing including a textured fluid bearing surface and a second surface and a recordable disc. The recordable disc includes a substrate, a recordable media layer on the substrate, and at least one of the textured fluid bearing surface and the second surface. The device may be manufactured using MEMS techniques. MEMS techniques provide the high precision necessary to create the textured fluid bearing surface. MEMS techniques also allow the recordable disc to be batch-fabricated with one or more additional recordable discs.
Abstract:
A device comprises a recordable disc, a substrate adjacent to the recordable disc, and an actuation mechanism fixed to the substrate. The recordable disc includes a base layer and a recordable layer on the base layer. Additional electrodes or magnetic components may be placed on the base layer to provide electromagnetic or electrostatic forces to rotate the recordable disc when acted on by the actuation mechanism. As an example, the invention may utilize MEMS techniques in order to integrate a disc and motor of a disc drive as a common component.
Abstract:
A head having micro-positioning control. The head includes a slider body and a transducer body coupled to the slider body through a flexible interface. The transducer body is spaced from the slider body to form a gap therebetween. Micro-positioning actuators are coupled to the transducer body in the gap to provide micro-positioning control. In an embodiment for an air bearing slider, the gap includes off-track and fly height positioning control.
Abstract:
An integrated interface structure for a nested body to provide an electrical connection. The interface structure includes nested bond pads which electrically interface with leads. The nested bond pads are fabricated on a microstructure to provide an interface to drive circuitry for transducer elements of a slider or head supported by the microstructure.
Abstract:
A read/write head microactuator includes first and second insulating deposits that are flat, spaced apart by an air gap, and laterally movable responsive to a microactuator electrical drive current. First and second flat, interdigitated drive electrode deposits are deposited on the first insulating deposit. A flat, digitated sense electrode deposit is deposited on the second insulating deposit. The sense electrode deposit provides a relative position output. The sense electrode deposit faces both the drive electrode deposits across the air gap.
Abstract:
A microactuator suspension supports a slider. The microactuator suspension has at least a first resilient support extending from a slider attachment pad to a suspension arm attachment pad. The slider attachment pad forms a clip which contacts the slider on side faces of the slider, and the microactuator adds little or nothing to the vertical thickness of the head gimbal assembly. The suspension arm attachment pad attaches to the gimbal with an attachment bridge which is longitudinally balanced relative to the gimbal point and relative to the air bearing centroid of the slider. The resilient supports may be beams having ends which are longitudinally spaced relative to the gimbal point, to the air bearing centroid, and to the attachment bridge to minimize moments and localized stresses on the beams. Dual beam and multiple beam arrangements are provided.
Abstract:
High precision force imparting and/or a force (including weight) and displacement measuring/indicating device which includes a multi-dimensional capacitor transducer system. The multi-dimensional transducer includes a first capacitive transducer for imparting force or movement and/or detecting force, weight or position in a first direction and a second capacitive transducer for imparting force or movement and/or detecting force, weight or position in a second direction. The multi-dimensional transducer may be used to provide in situ imaging in micro-mechanical test systems.
Abstract:
A micro-electromechanical systems (MEMS) disc drive includes high-precision and integrated components to allow for increased functionality, robustness and reduced size as compared to currently produced disc drives. Integrating multiple subcomponents of the disc drive using batch processing provides low manufacturing costs. Furthermore, using MEMS techniques, new features can be added to disc drives. For example, an environmental control component, an accelerometer and/or a thermometer may be integrated into the housing of the disc drive.
Abstract:
A transducing device responsive to magnetic fields includes a writer, a reader, an actuator, and a void. The actuator is positioned proximate the writer and reader. The void is positioned between at least one of the reader and writer and a substrate of a sensing device. The void is also positioned proximate an external surface.
Abstract:
A head for a data storage device including an independently supported transducer body floatably coupled to the slider body and including at least one transducer element. The transducer body is independently supported relative to the disc surface to provide transducer level control for read-write operations.