摘要:
Communication devices may determine routes and/or may select a route for communicating data between a first communication device and a second communication device. The selected route may require the least power consumption. The determined routes may be ranked based on an amount of power required for routing the data. The data may be routed among devices based on the ranking. Power consumption of a device may be determined based on a bandwidth associated with the device. Route selection may be based on availability of power for power sources of the communication devices. The selection of routes may be based on a current power consumption and/or a history of prior power consumption of the communication devices. The selection of a route which may require least power consumption may be optimized based on the availability of bandwidth.
摘要:
Communication devices may determine routes for packets based on packet marking, routing parameters and/or costs associated with routes. A route may be selected and the packets may be communicated via the selected route. The parameters may comprise service class, real time compression, packet preemption, quality measurements, tier bypass and/or power usage information. The costs may comprise capacity, efficiency and/or performance information for power usage, bandwidth, memory and/or processing. The marking may comprise traffic type, user device capabilities, service class, quality measurements, latency requirements and/or power usage information. Endpoint devices, software applications and/or service providers may insert the marking into packets. Routes may be determined and/or selected based on shortest path bridging, audio video bridging, the marking, the routing parameters and/or the costs. Parameters and/or costs may be received and/or discovered from communication devices. Packets and/or the marking may be parsed and/or inspected. Costs may be based on routing parameters.
摘要:
Link partners coupled via an Ethernet link comprise memory buffers and/or PHY devices and the memory buffers may be operable to buffer packets that are pending delivery via the PHY devices. Latency requirements may be determined by inspecting OSI layer 2 or higher OSI layer information. Markings within packets may be inspected for latency requirements. An order of communicating buffered packets may be determined based on latency requirements. Corresponding packet headers may be ordered based on the latency requirements. Packet delivery may be scheduled based on the latency requirements. A specified time and/or a specified quantity of buffered data, which may be statically or dynamically programmable and/or configurable, may trigger determination of latency requirements. Packets may be delivered after an indication that prior packets have been delivered. Latency requirements may depend on a device that may generate and/or render the packets.
摘要:
Latency requirements for Ethernet link partners comprising PHY devices and memory buffers, may be determined for packets pending transmission. Transmission may be interrupted for a first packet having greater latency than a second packet, and the second packet may be transmitted. The second packet may be interrupted for transmission of a third or more packets. Packets are inspected for marks and/or for OSI layer 2 or higher OSI layer information to determine the latency requirements prior to completion of transmission of the first packet. The second packet is transmitted after a first portion of the first packet and/or prior to a second portion. Delimiters are inserted among the first and/or second packets for interrupting transmission. A PHY layer, MAC layer and/or higher OSI layer of the second link partner may receive, buffer and/or parse the packets and/or packet portions and/or may reconstruct the first packet and/or the second packet.
摘要:
Communication devices may determine routes for packets based on packet marking, routing parameters and/or costs associated with routes. A route may be selected and the packets may be communicated via the selected route. The parameters may comprise service class, real time compression, packet preemption, quality measurements, tier bypass and/or power usage information. The costs may comprise capacity, efficiency and/or performance information for power usage, bandwidth, memory and/or processing. The marking may comprise traffic type, user device capabilities, service class, quality measurements, latency requirements and/or power usage information. Endpoint devices, software applications and/or service providers may insert the marking into packets. Routes may be determined and/or selected based on shortest path bridging, audio video bridging, the marking, the routing parameters and/or the costs. Parameters and/or costs may be received and/or discovered from communication devices. Packets and/or the marking may be parsed and/or inspected. Costs may be based on routing parameters.
摘要:
Aspects of a method and system for network communications utilizing shared scalable resources are provided. In this regard, networking state information for one or more of a plurality of communication devices may be communicated to a network management device. The network management device may be operable to aggregate the networking state information. The plurality of communication devices may receive aggregated networking state information from the network management device. The plurality of communication devices may route packets based on the received aggregated networking state information. The network management device may be dynamically or manually selected from the plurality of communication devices. The plurality of communication devices may be associated with a sharing domain, and one or more communication devices may be dynamically added to and/or removed from the sharing domain.
摘要:
Aspects of a method and system for network communications utilizing shared scalable resources are provided. In this regard, networking state information for one or more of a plurality of communication devices may be communicated to a network management device. The network management device may be operable to aggregate the networking state information. The plurality of communication devices may receive aggregated networking state information from the network management device. The plurality of communication devices may route packets based on the received aggregated networking state information. The network management device may be dynamically or manually selected from the plurality of communication devices. The plurality of communication devices may be associated with a sharing domain, and one or more communication devices may be dynamically added to and/or removed from the sharing domain.
摘要:
A virtual machine running on an endpoint device may encode a mark comprising routing parameters within one or more packets of a packet stream to indicate services and/or costs to be utilized in processing and/or communicating the packet stream. The virtual machine may communicate the packet stream to another network device. The routing parameters within the marks may indicate device capabilities, service class, quality measurements, latency and/or power usage. The routing parameters may comprise costs that may indicate capacity, efficiency and/or performance of power usage, bandwidth, absolute and/or relative latency, frame-drop eligibility, memory and processing. The packet stream is received and inspected to identify the marks and/or routing parameters. A virtual machine may be initialized and/or configured to process and/or communicate the packet stream based on the routing parameters. Routing may utilize based SPB, TRILL, and/or AVB.
摘要:
A method and apparatus are disclosed for performing dynamic arbitration of memory accesses by a CPU and at least one bus master interface module based on, at least in part, monitoring a CPU throttle control signal and monitoring CPU power and performance states, and making decisions based on the monitored parameters. Bus master memory access break events and memory read and write accesses are also monitored as part of the arbitration process in accordance with certain embodiments of the present invention. An arbitration (ARB) module performs the dynamic arbitration. A CPU throttle control module generates the CPU throttle control signal, indicating when the CPU is idle, and also monitors and outputs the CPU power and performance states. A memory controller (MC) module controls accesses to the memory subsystem based on, at least in part, the dynamic arbitration performed by the dynamic arbitration module.
摘要:
A method and apparatus are disclosed for performing adaptive memory power management in a system employing a CPU and a memory subsystem. A CPU throttle control (THR) module generates a CPU throttle control signal indicating when the CPU is idle. A memory controller (MC) module generates memory power management signals based on at least one of the CPU throttle control signal, memory read/write signals, memory access break events, and bus master access requests. Certain portions of the memory subsystem are powered down in response to the memory power management signals. Memory power management is performed on a time segment by time segment basis to achieve efficient power management of the memory subsystem during CPU run time.