摘要:
A light emitting device according to one embodiment includes a board; plural first light emitting elements mounted on the board to emit light having a wavelength of 250 nm to 500 nm; plural second light emitting elements mounted on the board to emit light having a wavelength of 250 nm to 500 nm; a first fluorescent layer formed on each of the first light emitting elements, the first fluorescent layer including a first phosphor; and a second fluorescent layer formed on each of the second light emitting elements, the second fluorescent layer including a second phosphor. The second phosphor is higher than the first phosphor in luminous efficiency at 50° C., and is lower than the first phosphor in the luminous efficiency at 150° C.
摘要:
A light emitting device according to one embodiment includes a light emitting element that emits light having a wavelength of 250 nm to 500 nm; plural red fluorescent layers that are formed above the light emitting element to include a red fluorescent material, the red fluorescent layers being disposed at predetermined intervals; and plural green fluorescent layers that are formed above the light emitting element to include a green fluorescent material, a distance between the light emitting element and the green fluorescent layers being larger than a distance between the light emitting element and the red fluorescent layers.
摘要:
A light emitting device according to one embodiment includes a board; plural first light emitting elements mounted on the board to emit light having a wavelength of 250 nm to 500 nm; plural second light emitting elements mounted on the board to emit light having a wavelength of 250 nm to 500 nm; a first fluorescent layer formed on each of the first light emitting elements, the first fluorescent layer including a first phosphor; and a second fluorescent layer formed on each of the second light emitting elements, the second fluorescent layer including a second phosphor. The second phosphor is higher than the first phosphor in luminous efficiency at 50° C., and is lower than the first phosphor in the luminous efficiency at 150° C.
摘要:
The embodiment provides a process for production of an oxynitride fluorescent substance. An compound containing In or Ga is adopted in the process as a material thereof. The red fluorescent substance produced by the process can be combined with a semiconductor light-emitting element, so as to be used in a light-emitting device or a light-emitting module.
摘要:
The present invention provides a fluorescent substance excellent both in quantum efficiency and in temperature characteristics, and also provides a process for producing the fluorescent substance. This fluorescent substance is an oxynitride phosphor having a low paramagnetic defect density and comprising aluminum, silicon, either or both of oxygen and nitrogen, and a metal element M, provided that the metal element M is partly replaced with an emission center element R. That phosphor can be produced by the steps of: subjecting a mixture of starting materials to heat treatment under a nitrogen atmosphere so as to obtain an intermediate fired product, and then further subjecting the intermediate fired product to heat treatment under an atmosphere of nitrogen-hydrogen mixed gas.
摘要:
According to one embodiment, the luminescent material emits light having an luminescence peak within a wavelength range of 550 to 590 nm when excited with light having an emission peak in a wavelength range of 250 to 520 nm. The luminescent material has a composition represented by the following formula 1. (Sr1-xEux)aSibAlOcNd formula 1 wherein x, a, b, c and d satisfy following condition: 0
摘要:
The embodiment provides a process for production of an oxynitride fluorescent substance. An compound containing In or Ga is adopted in the process as a material thereof. The red fluorescent substance produced by the process can be combined with a semiconductor light-emitting element, so as to be used in a light-emitting device or a light-emitting module.
摘要:
A light emitting device according to embodiments has: a substrate; first light emitting units arranged along a first straight line on the substrate; second light emitting units arranged along a second straight line on the substrate, the second straight line being parallel to the first straight line, the second light emitting units having an emission color different from the first light emitting units; and third light emitting units arranged along a third straight line on the substrate, the third straight line being parallel to the first and second straight lines, the third light emitting units having an emission color different from the first and second light emitting units, wherein a distance between light emitting units of a same emission color is longer than a minimum distance between light emitting units of different emission colors.
摘要:
A light emitting device according to one embodiment includes a board; plural first light emitting elements mounted on the board to emit light having a wavelength of 250 nm to 500 nm; plural second light emitting elements mounted on the board to emit light having a wavelength of 250 nm to 500 nm; a first fluorescent layer formed on each of the first light emitting elements, the first fluorescent layer including a first phosphor; and a second fluorescent layer formed on each of the second light emitting elements, the second fluorescent layer including a second phosphor. The second phosphor is higher than the first phosphor in luminous efficiency at 50° C., and is lower than the first phosphor in the luminous efficiency at 150° C.
摘要:
The present invention provides a fluorescent substance excellent both in quantum efficiency and in temperature characteristics, and also provides a process for producing the fluorescent substance. This fluorescent substance is an oxynitride phosphor having a low paramagnetic defect density and comprising aluminum, silicon, either or both of oxygen and nitrogen, and a metal element M, provided that the metal element M is partly replaced with an emission center element R. That phosphor can be produced by the steps of: subjecting a mixture of starting materials to heat treatment under a nitrogen atmosphere so as to obtain an intermediate fired product, and then further subjecting the intermediate fired product to heat treatment under an atmosphere of nitrogen-hydrogen mixed gas.