摘要:
A method of forming an electrical device is provided that includes forming at least one semiconductor device on a first semiconductor layer of the SOI substrate. A handling structure is formed contacting the at least one semiconductor device and the first semiconductor layer. A second semiconductor layer and at least a portion of the dielectric layer of the SOI substrate are removed to provide a substantially exposed surface of the first semiconductor layer. A retrograded well may be formed by implanting dopant through the substantially exposed surface of the first semiconductor layer into a first thickness of the semiconductor layer that extends from the substantially exposed surface of the semiconductor layer, wherein a remaining thickness of the semiconductor layer is substantially free of the retrograded well dopant. The retrograded well may be laser annealed.
摘要:
The present invention provides a semiconductor structure and a manufacturing method thereof. The method comprises: providing a semiconductor substrate comprising semiconductor devices; depositing a copper diffusion barrier layer on the semiconductor substrate; forming a copper composite layer on the copper diffusion barrier layer; decomposing the copper composite at corresponding positions, where copper interconnection is to be formed, into copper according to the shape of the copper interconnection; and etching off the undecomposed copper composite and the copper diffusion barrier layer underneath, to interconnect the semiconductor devices. The present invention is adaptive for manufacturing interconnection in integrated circuits.
摘要:
The invention relates to a method for forming a semiconductor structure, comprising: providing a semiconductor substrate which comprises a dummy gate formed thereon, a spacer surrounding the dummy gate, source and drain regions formed on two sides of the dummy gate, respectively, and a channel region formed in the semiconductor substrate and below the dummy gate; removing the dummy gate to form a gate opening; forming a stressed material layer in the gate opening; performing an annealing to the semiconductor substrate, the stressed material layer having tensile stress characteristics during the annealing; removing the stressed material layer in the gate opening; and forming a gate in the gate opening. By the above steps, the stress memorization technique can be applied to the pMOSFET.
摘要:
A method for manufacturing a semiconductor structure comprises: providing a substrate, forming an active region on the substrate, forming a gate stack or a dummy gate stack on the active region, forming a source extension region and a drain extension region at opposite sides of the gate stack or dummy gate stack, forming a spacer on sidewalls of the gate stack or dummy gate stack, and forming a source and a drain on portions of the active region exposed by the spacer and the gate stack or dummy gate stack; removing at least a part of a source-side portion of the spacer, such that the source-side portion of the spacer has a thickness less than that of a drain-side portion of the spacer; and forming a contact layer on portions of the active region exposed by the spacer and the gate stack or dummy gate stack. Correspondingly, the present invention further provides a semiconductor structure. The present invention is beneficial to the reduction of the contact resistance of the source extension region and meanwhile can also reduce the parasitic capacitance between the gate and the drain extension region.
摘要:
A semiconductor device comprises: a semiconductor substrate located on an insulating layer; and an insulator located on the insulating layer and embedded in the semiconductor substrate, wherein the insulator applies stress therein to the semiconductor substrate. A method for forming a semiconductor device comprises: forming a semiconductor substrate on an insulating layer; forming a cavity within the semiconductor substrate so as to expose the insulating layer; forming an insulator in the cavity, wherein the insulator applies stress therein to the semiconductor substrate. It facilitates the reduction of the short channel effect, the resistance of source/drain regions and parasitic capacitance.
摘要:
The present invention provides a semiconductor structure, comprising: a substrate; a gate formed on the substrate, and a source and drain formed in the substrate and disposed at two sides of the gate; raised portions formed on the source and the drain, respectively, a height of the raised portions being approximate to a height of the gate; and a metal silicide layer and contact holes formed on the raised portions and on the gate. By virtue of the raised portions added to the source/drain in an embodiment of the present invention, the height difference between the gate and the source/drain may be decreased, such that the formation of the contact holes becomes much easier.
摘要:
The present invention proposes a strip plate structure and a method of manufacturing the same. In one embodiment, the strip plate structure comprises a strip plate array comprising a plurality of strip plates arranged in a predetermined direction with spacing, each of said strip plates including a first surface facing one side direction of the strip plate structure and a second surface facing an substantially opposite side direction of the strip plate structure; and a plurality of strip sheets, each strip sheet alternately abutting either the first surfaces or the second surfaces of two adjacent strip plates.
摘要:
The present application discloses a semiconductor device and a method for forming the same. The method comprises: providing a first semiconductor layer and forming a first STI in the first semiconductor layer; determining a selected region in the first semiconductor layer, and making a portion of the first semiconductor layer in the selected region recessed; and in the selected region, epitaxially growing a second semiconductor layer on the first semiconductor layer, wherein the material of the second semiconductor layer is different from that of the first semiconductor layer. According to the present invention, a structure with a second semiconductor layer selectively epitaxially grown and embedded in the first semiconductor layer can be formed by a simple process, and defects generated during the epitaxial growth process can be further reduced.
摘要:
The present application discloses a semiconductor structure and a method for manufacturing the same. The semiconductor structure according to the present invention adjusts a threshold voltage with a common contact, which has a portion outside the source or drain region extending to the back-gate region and provides an electrical contact of the source or drain region and the back-gate region, which leads to a simple manufacturing process, an increased integration level and a lowered manufacture cost. Moreover, the asymmetric design of the back-gate structure further increases the threshold voltage and improves the performance of the device.
摘要:
The present application discloses a semiconductor device comprising a fin of semiconductive material formed from a semiconductor layer over a semiconductor substrate and having two opposing sides perpendicular to the main surface of the semiconductor substrate; a source region and a drain region provided in the semiconductor substrate adjacent to two ends of the fin and being bridged by the fin; a channel region provided at the central portion of the fin; and a stack of gate dielectric and gate conductor provided at one side of the fin, where the gate conductor is isolated from the channel region by the gate dielectric, and wherein the stack of gate dielectric and gate conductor extends away from the one side of the fin in a direction parallel to the main surface of the semiconductor substrate, and insulated from the semiconductor substrate by an insulating layer. The semiconductor device has an improved short channel effect and a reduced parasitic capacitance and resistance, which contributes to an improved electrical property and facilitates scaling down of the transistor.