Abstract:
A comparator module applied to a voltage level clamping circuit which can be implemented in an integrated circuit (IC) is provided. The IC includes a parasitic diode coupled between a first voltage source and a second voltage source. The voltage level clamping circuit includes a switch module and a comparator module. The comparator module has an output terminal, a first input terminal coupled to a first voltage source, and a second input terminal coupled to a second voltage source. The comparator module includes a current source module, a first voltage level adjusting circuit module, a second voltage level adjusting circuit module, and a comparing circuit module.
Abstract:
A touch panel is provided and includes a plurality of electrode strip sets, a plurality of transparent traces and a plurality of electrode series sets. The electrode strip sets include a first electrode strip set and a second electrode strip, and the first electrode strip set is disposed between the second electrode strip and a pad region. The transparent traces are disposed in a light-transmitting region, the transparent traces electrically connected to the first electrode strip set and the second electrode strip set include a winding segment respectively, and a length of the winding segment electrically connected to the first electrode strip set is longer than a length of the winding segment electrically connected to the second electrode strip set. The electrode series sets cross the electrode strip sets.
Abstract:
A driving method of a touch display device is provided. In a first display period of a first frame time, m gate signals are sequentially provided to first to mth gate lines, respectively, wherein m is a positive integer. In a first touch control period of the first frame time immediately following the first display period, a touch driving signal is provided to a touch sensor. In another first display period of a second frame time immediately following the first frame time, p gate signals are sequentially provided to the first to gate lines, pth respectively, where p is a positive integer and is different from m. In another first touch period of the second frame time immediately following the another first display period, the touch driving signal is provided to the touch sensor.
Abstract:
A fingerprint identification electrode includes a first conductive layer, a second conductive layer, and an insulating layer between the first conductive layer and the second conductive layer. The first conductive layer includes a plurality of first touch electrode strips. The second conductive layer includes a plurality of second touch electrode strips and a plurality of dummy electrodes. The first touch electrode strips and the second touch electrode strips intersect. The second touch electrode strips are separated from the dummy electrodes. A part of each of the first touch electrode strips that is located between any two adjacent second electrode strips overlaps at least one of the dummy electrodes.
Abstract:
A fingerprint recognition device includes a light-transmissible substrate, a plurality of sensing elements, a set of conductive lines and a fingerprint recognition chip. The sensing elements are disposed and the set of conductive lines are an upper surface of the light-transmissible substrate. The fingerprint recognition chip is also disposed on the upper surface of the light-transmissible substrate, and is connected to the sensing elements through the set of conductive lines. The fingerprint recognition chip drives the sensing elements, receives a plurality of sensing results generated by the sensing elements, and accordingly determines a user fingerprint.
Abstract:
An in-cell touch display panel includes a substrate, a semiconductor stack, a transparent layer, an insulation layer, and a metal layer. The semiconductor stack is disposed on the substrate, and includes a plurality of pixel control elements. The transparent layer is disposed on the semiconductor layer stack, and includes a plurality of first touch electrode portions and a plurality of first connecting lines extending along a first direction. The insulation layer is disposed on the transparent layer. The metal layer is disposed on the insulation layer, and includes a plurality of second touch electrode portions and a plurality of second connecting lines extending along a second direction. The second connecting lines and the first touch electrode portions form a plurality of first touch electrode strips, and the first connecting lines and the second touch electrode portions form a plurality of second touch electrode strips.
Abstract:
The present disclosure provides a buffer circuit comprising a plurality of operational amplifiers and a switch module. Each operational amplifier forms a buffer. The operational amplifier has an output stage. The stage has a first transistor and a second transistor. The first transistor and the second transistor are connected to an output terminal. The first transistor has a first control terminal. The second transistor has a second control terminal. The switch module is connected to the first control terminal of the first transistor and the second control terminal of the second transistor. The switch module connects together at least two of the first terminals of the first transistor according to a control signal. The switch module connects together at least two of the second terminals of the second transistor according to the control signal.
Abstract:
A current-to-voltage converter which is used to receive an input current and to generate an output voltage accordingly comprises a current tracking bias circuit, a current-to-voltage unit, and a voltage clamp bias circuit. The current tracking bias circuit generates a first bias according to the input current. The current-to-voltage unit receives the first bias and the input current, and generates the output voltage according to the input current, wherein the first bias determines a range of the input current, the current-to-voltage unit has a first current control device, and the first current control device changes a current conduction level thereof in response to the first bias, such that a rising or falling speed of the output voltage is enhanced. The voltage clamp bias circuit clamps voltage levels of two ends where the voltage clamp bias circuit is connected to the current-to-voltage unit.
Abstract:
A bandgap reference voltage circuit comprises a current mirror unit, an operation amplifier (OP), a first resistor, a second resistor, an auxiliary unit, and a voltage generation circuit. An output end of the OP is coupled to a feedback end of the current mirror unit. An end of the first resistor and an end of the second resistor are coupled to a positive input end of the OP. Another end of the first resistor is coupled to a second end of the current mirror unit. A second end of the voltage generation circuit is coupled to another end of the second resistor. An end of the auxiliary unit is coupled to a negative input end of the OP and a first end of the voltage generation circuit, and another end of the auxiliary unit is coupled to the first end of the current mirror unit.
Abstract:
A transparent touch panel includes a transparent substrate and a transparent layer disposed on the transparent substrate. The surface of the transparent substrate has an electrode region and a wiring region. The transparent layer includes at least one touch sensitive electrode and at least one conductive wiring. The at least one touch sensitive electrode is disposed in the electrode region and has a plurality of bent slits. The at least one conductive wiring is disposed in the wiring region and electrically connected to the touch sensitive electrode and has a bent shape.