摘要:
Disclosed is an electromagnetic wave blocking member for a display apparatus. The electromagnetic wave blocking member may include a transparent substrate, an electrode layer, and a transparent conductive layer. The electrode layer can include i) a grounding electrode corresponding to at least one frame area of the transparent substrate, and ii) an auxiliary electrode overlying the transparent substrate for connection with the grounding electrode and having a mesh or stripe pattern. The transparent conductive layer can be formed either on the electrode layer or between the transparent substrate and the electrode layer. In one example, the transparent conductive layer can include a series of a metal thin film alternating with a metal oxide thin film a plurality of times.
摘要:
An optical filter for reducing color shift in an LCD is disposed in front of an LCD panel of the LCD. The optical filter includes a color shift-reducing layer and an external light-blocking layer. The color shift-reducing layer includes a background layer and a plurality of engraved or embossed lens sections formed on the background layer such that the lens sections are spaced apart from each other. When light having different colors depending on the viewing angle and the grayscale level, owing to the birefringence characteristics of liquid crystal molecules, is emitted from the LCD panel, the lens sections diffuse the direction in which a portion of the light incident onto the lens sections is emitted, so that the portion of the light is mixed with another portion of the light passing between adjacent lens sections. The external light-blocking layer contains an anisotropic absorber.
摘要:
An optical film for reducing color shift in an LCD is disposed in front of a liquid crystal panel of the LCD. The optical film includes a background layer, a plurality of engraved lens sections formed in the background layer such that the engraved lens sections are spaced apart from each other, and portions partially packed in the engraved lens sections. The partially packed portions contain a light dispersing material. The partially packed portions are implemented by mixing the light dispersing material into a base material. The refractive index of the light dispersing material is different from that of the base material.
摘要:
An apparatus for measuring transmissivity of a patterned glass substrate. A beam radiator radiates a laser beam. A collimation lens collimates the laser beam radiated from the laser beam radiator. A beam expander expands a size of the laser beam collimated by the collimation lens. A detector has a light-receiving section, which receives the laser beam that has passed through the patterned glass substrate after having been expanded by the beam expander. A measuring section measures a transmissivity of the patterned glass substrate using the laser beam received by the detector.
摘要:
An apparatus for manufacturing tempered glass. A transportation unit transports a glass substrate that is intended to be tempered. An ionizer ionizes alkali oxides in the glass substrate by radiating energy onto the glass substrate. A dielectric heating unit increases the temperature of the inner portion of the glass substrate in which the alkali oxides are ionized by the ionizer.
摘要:
A flat display and a method of fabricating the same, in which the fabrication of the flat display is facilitated by employing a plate-to-plate method. The method of fabricating a flat display panel includes the steps of forming an optical bonding resin layer by applying an optical bonding resin on the underside of a transparent film, attaching a filter to the upper surface of the transparent film, and attaching the optical bonding resin layer to the upper surface of a display panel using a plate-to-plate method.
摘要:
There is provided a compound semiconductor substrate prepared by forming a point defect in an inside structure thereof by implanting an electrically-neutral impurity with energy of 0.1 to 10 MeV on a surface of the substrate. When the compound semiconductor is undoped, electrical resistance increases to increase insulating properties, and when the compound semiconductor is doped with an n-type dopant, the impurity is implanted and charge concentration of the substrate increases to increase conductive properties. In accordance with the present invention, the various electrical properties needed for the compound semiconductor can be effectively controlled by increasing the insulating properties of the undoped compound semiconductor or by increasing the charge concentration of the n-type compound semiconductor, and the application range to various devices can be expanded.
摘要:
A photovoltaic cell substrate, a method of manufacturing the photovoltaic cell substrate, and a photovoltaic cell. The photovoltaic cell substrate includes a transparent substrate having a first surface-roughening film formed on one surface thereof and a transparent conductive film formed over the first surface-roughening film of the transparent substrate. The transparent conductive film is made of a metal oxide which is doped with a dopant.
摘要:
In one example embodiment, a light emitting device includes a transparent substrate and a transparent electrode on the transparent substrate, the transparent electrode comprising at least two transparent electrode layers, the at least two transparent electrode layers being successively stacked and having different refractive indices, the refractive index of one of the at least two transparent electrode layers that is closer to the transparent substrate being higher than the refractive index of the other one of the at least two transparent electrode layers. The light emitting device further includes a light emission layer on the transparent electrode and a reflective electrode on the light emission layer.
摘要:
An apparatus for measuring transmittance which can realize reliability for measurement of the transmittance of a piece of patterned glass by post dispersion of light. The apparatus includes a light source which is disposed in front of an object that is to be measured, and directs light into the object. An integrating sphere is disposed in the rear of the light source and integrating light incident thereinto. The object is mounted on the front portion of the integrating sphere. A light dispersing part is disposed in the rear of the integrating sphere, and disperses light that has been integrated by and then emitted from the integrating sphere. An optical receiver is disposed adjacent to the light dispersing part, and receives light that has been dispersed by the light dispersing part.