Abstract:
Provided are electrical connection structures and methods of fabricating the same. The structures may include a substrate including a bonding pad region provided with a bonding pad and a fuse region provided with a fuse, an insulating layer provided on the substrate and including a bonding pad opening exposing the bonding pad and a fuse opening exposing the fuse region, a connection terminal provided in the bonding pad region and electrically connected to the bonding pad, and a protection layer provided on the insulating layer including a first protection layer provided within the bonding pad region and a second protection layer in the fuse opening.
Abstract:
Provided are electrical interconnections and methods for fabricating the same. The electrical interconnection may include a substrate including a bonding pad, a solder ball electrically connected to the bonding pad, a solder supporter on the bonding pad, a portion of the solder ball filling the solder supporter, and a metal layer between the bonding pad and the solder supporter, the metal layer having an ionization tendency lower than the bonding pad.
Abstract:
In one example embodiment, a light emitting device includes a transparent substrate and a transparent electrode on the transparent substrate, the transparent electrode comprising at least two transparent electrode layers, the at least two transparent electrode layers being successively stacked and having different refractive indices, the refractive index of one of the at least two transparent electrode layers that is closer to the transparent substrate being higher than the refractive index of the other one of the at least two transparent electrode layers. The light emitting device further includes a light emission layer on the transparent electrode and a reflective electrode on the light emission layer.
Abstract:
An integrated circuit device including an interlayer insulating layer on a substrate, a wire layer on the interlayer insulating layer, and a through-silicon-via (TSV) contact pattern having an end contacting the wire layer and integrally extending from inside of a via hole formed through the interlayer insulating layer and the substrate to outside of the via hole.
Abstract:
According to example embodiments, a light emitting device includes a transparent substrate, a transparent electrode on a transparent substrate, a transparent light extraction layer at least partially on the transparent electrode, a light emitting layer on the transparent electrode, and a reflective electrode on the light extraction layer and the light emitting layer. The light extraction layer and the light emitting layer may be alternately and repeatedly arranged between the transparent electrode and the reflective electrode.
Abstract:
An integrated circuit device including an interlayer insulating layer on a substrate, a wire layer on the interlayer insulating layer, and a through-silicon-via (TSV) contact pattern having an end contacting the wire layer and integrally extending from inside of a via hole formed through the interlayer insulating layer and the substrate to outside of the via hole.