Abstract:
Vascular lesions and plaque can be removed using a treatment based on introduction of magnetic nanoparticles into the circulatory system of a patient having such vascular lesions. The particles in an aqueous suspension are injected near the site of the lesion and magnetic forces are used to immobilize the particles in contact with the lesions. An alternating magnetic field or focused electromagnetic energy is then used to heat the particles, thereby destroying the lesion. Following destruction of the lesion, additional populations of magnetic particles having growth factors, anti-inflammatory agents and other medicaments on their surfaces can be localized at the site of the former lesion. These medicated particles accelerate healing at the site.
Abstract:
Aspects of the present disclosure include methods of performing a cardiac surgical procedure on a subject. The methods include performing the cardiac surgical procedure in combination with pulmonary vein isolation and left atrial appendage modification. Kits for use in performing a cardiac surgical procedure are also provided, the kits including a device configured to perform a pulmonary vein isolation procedure, and a device configured to perform a left atrial appendage modification.
Abstract:
A biomedical polymer composite that exhibits ultra-low thermal conductivity properties. In a preferred embodiment, the biomedical polymer composite comprises a base polymer component with a dispersed thermally non-conductive filler component consisting of glass or ceramic nanospheres or microspheres that have a thermal conductivity of less than 5 W/m-K, and preferably less than 2 W/m-K. In one embodiment, the polymer composite has an electrically conductive filler and can be used in a filament for treating arteriovascular malformations. In another embodiment, the polymeric composite can be used as an energy-coupling means to apply energy to tissue.
Abstract:
A method of filling an aneurysm is described which includes the step of advancing a device through a patient's vascular system to an aneurysm and positioning the device within the aneurysm. The device has a closed mesh structure forming by a plurality of flexible filaments. The device also has a proximal collar and a distal collar with the flexible filaments extending therebetween. The closed mesh structure is movable from a collapsed configuration to an expanded configuration.
Abstract:
Embolic implants, delivery systems and methods of manufacture and delivery are disclosed. The devices can be used for aneurysm treatment and/or parent vessel occlusion. Implant designs offer low profile compressibility for delivery to neurovasculature, while maintaining other necessary features such as density for occlusion purposes and desirable radial strength characteristics.
Abstract:
The present invention generally relates to a flexible catheter device capable of being introduced into body passages, withdraw fluids therefrom or introduce fluids thereinto, and which includes electrodes configured to apply electrical signals in the body passage for carrying out thrombus dissolution and/or thrombectomy, wherein one of said electrodes is designed to contact the thrombus material and remove it or dissolve it, and wherein the electrical voltage signals are a unipolar pulsatile voltage signal.
Abstract:
A device for treating vascular malformations includes a primary coil and secondary windings. The primary coil provides resilience and structural integrity while the secondary windings fill interstitial spaces in the primary coil to isolate the vascular malformation. The device may have increased density along a central portion to isolate the malformation. In another aspect, the device may have a central opening through which embolic materials may be delivered.
Abstract:
Embolic implants, delivery systems and methods of manufacture and delivery are disclosed. The devices can be used for aneurysm treatment and/or parent vessel occlusion. Implant designs offer low profile compressibility for delivery to neurovasculature, while maintaining other necessary features such as density for occlusion purposes and desirable radial strength characteristics.
Abstract:
A biomedical polymer composite that exhibits ultra-low thermal conductivity properties. In a preferred embodiment, the biomedical polymer composite comprises a base polymer component with a dispersed thermally non-conductive filler component consisting of glass or ceramic nanospheres or microspheres that have a thermal conductivity of less than 5 W/mnullK, and preferably less than 2 W/mnullK. In one embodiment, the polymer composite is has an electrically conductive filler and can be used in a filament for treating arteriovascular malformations. In another embodiment, the polymeric composite can be used as an energy-coupling means to apply energy to tissue.
Abstract:
The invention relates to a device for the implantation of electrolytically releasable occlusion means in body cavities or blood vessels. The device is intended for use in veterinary or human medicinal processes for the occlusion of aneurysms.