Abstract:
The invention relates to a nozzle device (100) for producing a three-dimensional component made of a material, in particular a shotcrete component made of concrete, a material application system (1), a manufacturing system (200) and a method for producing a three-dimensional component made of a material, in particular a shotcrete component made of concrete. In particular, the invention relates to a nozzle device (100) for producing a three-dimensional component made of a material, in particular a shotcrete component made of concrete, comprising a nozzle unit (101) with a material guide (102), which has a material inlet (104) for introducing a material, in particular a concrete, and a nozzle element (106) fluidically coupled to the material inlet (104) for applying the material, in particular the concrete, which is preferably arranged replaceably on the nozzle unit (101).
Abstract:
A electrostatic powder feeder includes a body having a cavity. The cavity is shaped and sized to hold a supply of powder particles and is defined by a cavity wall. A diverter is disposed in the cavity and positioned away from the cavity wall so as to create a powder flow space between the diverter and cavity wall. The feeder includes an electrode and a powder landing surface connected to a power supply. The electrode is positioned remotely from the powder landing surface at a distance at which it can act upon powder resting upon the powder landing surface. An aperture through which powder particles may fall is disposed in or proximate to the powder landing surface. An insulator is positioned between the electrode and the powder landing surface. The power supply produces an alternating electric potential that creates an alternating electric field between the electrode and powder landing surface that causes powder particles to oscillate and eventually fall through the aperture. In an alternative embodiment, the powder landing surface is on a diaphragm connected to the body and disposed below the powder flow space. The diaphragm is sized and shaped to hold a quantity of powder falling from the powder flow space. The diaphragm includes an aperture. A vibration actuator is affixed to the diaphragm, which provides a vibratory force to the powder particles.
Abstract:
A reactive hopper assembly for feeding a low pressure cold spray applicator for applying powder coatings is disclosed. A powder feed cartridge provides powder feed to a reaction chamber. An impeller housing is interconnected with the reaction chamber for receiving powder feed from the reaction chamber for metering powder feed received from the reaction chamber. A hopper vessel receives metered powder feed from the impeller housing for providing powder to the low pressure cold spray applicator. The reaction chamber is fluidly connected to a source of a reactive gas for chemically modifying the powder feed for in situ reducing surface oxidation of the powder feed.
Abstract:
A composite structure formation method includes the steps of storing a plurality of pre-formed controlled particles in a storage mechanism, supplying the controlled particles from the storage mechanism to an aerosolation mechanism constantly, disaggregating the supplied controlled particles into a plurality of the fine particles in the aerosolation mechanism to form an aerosol in which an entire contents of the controlled particles including the fine particles are dispersed in the gas; and spraying all of the fine particles in the aerosol toward the substrate to form a composite structure of the structure and the substrate. The controlled particles are controlled so that bonding strength between the fine particles includes a mean compressive fracture strength sufficient to substantially avoid disaggregation during the supply step, but which permits the controlled particles to be substantially completely disaggregated in the disaggregation step.
Abstract:
The invention relates to a device for conveying a fine-particle medium, in particular a granulate, including a flexible receptacle for receiving the medium, a receiving fixture for fastening of the receptacle in the region of an upper end facing away from a base of the receptacle, and a suction apparatus, inserted from above into the receptacle, for sucking the medium out of the receptacle. The device further includes outside the receptacle, in its base region or its lateral region, an apparatus for acting on the receptacle for the purpose of its deformation. The device ensures that feed interruptions during the conveyance of the fine-particle medium are avoided so that the medium is kept in a conveyable state, whereby an undisturbed automated feed of the medium is secured.
Abstract:
The present invention is directed to a powder spray apparatus for preparing a food product having an edible pearlescent coating, comprising: a spray zone having a spray device positioned proximate to at least one food product located in the spray zone for application of an edible pearlescent powder to the food product; a chamber for holding the edible pearlescent powder that is in fluid communication with the spray device; and a vibrator and/or a continuous forced air supply that assists in fluidizing the edible pearlescent powder in the chamber for delivery to the spray device. A method of using this apparatus and an edible pearlescent powder composition adapted for use in this apparatus are also disclosed.
Abstract:
The present invention is directed to a powder spray apparatus for preparing a food product having an edible pearlescent coating, comprising: a spray zone having a spray device positioned proximate to at least one food product located in the spray zone for application of an edible pearlescent powder to the food product; a chamber for holding the edible pearlescent powder that is in fluid communication with the spray device; and a vibrator and/or a continuous forced air supply that assists in fluidizing the edible pearlescent powder in the chamber for delivery to the spray device. A method of using this apparatus and an edible pearlescent powder composition adapted for use in this apparatus are also disclosed.
Abstract:
A system for continuously metering and transporting a powder comprises means (104-107) for fluidizing (F2) the powder in a closed reservoir (4), a tube (110) dipping into the fluidized powder (L4) and discharging (110B) to the outside of the reservoir (4), and means (S2, C2) for pressurizing the reservoir. The system further comprises supply means (C3) for continuously supplying pressurizing gas from the reservoir (4) to a chamber (V6) for mixing the gas with fluidized powder leaving the tube (110), said supply means (C3) being equipped with or constituting a constriction (R3) to the flow of the pressurizing gas. A hose (7) for transporting the powder mixed with the pressurizing gas is connected to the downstream end of the mixing chamber (V6).
Abstract:
A powder-bag emptying unit for powder spray coating facilities, comprises a bag-receiving hopper which is designed to receive a powder bag. The bag-receiving hopper is narrower at its bottom than at its top. The hopper wall keeps the powder bag dimensionally stable and in a fixed position in which a bag aperture is situated at the top end of the bag. The bag-receiving hopper is fitted at its lower end at the hopper center with a hopper opening which is open downward and permits coating powder to drop out of it. The bag-receiving hopper further is fitted with at least one vibrator to shake the bag-receiving hopper.
Abstract:
A device for depositing a mixture of powders to form an object with composition gradients, including: a plurality of tanks respectively configured to contain different powders; a powder mixer placed under the tanks and including a rotatably mounted mixing member; a plurality of powder dispensing mechanisms respectively cooperating with the tanks, and each configured to regulate mass flow rate of the powder escaping from a respective of the tanks towards the mixer; a powder mixture collector placed under the mixer; and a powder mixture dispenser placed under the collector.