摘要:
Negative-Working Lithographic Printing Plate Precursors can be provided with desired contrast coloration after imaging using a coloring fluid that includes a water-insoluble colorant that is soluble in a water-insoluble fatty alcohol. The coloring fluid provides an optical density change in the exposed regions of at least OD2 that is greater than the original optical density of those regions, OD1. The coloring fluid can be applied immediately after imaging and before processing, or it can be applied as part of the developer or processing solution, or it can be applied after processing. The coloring fluid can also be applied to imaged precursors that are designed for either off-press or on-press development.
摘要:
A method is disclosed in the context of a system comprises an electrophotographic subsystem, a transfer subsystem, an imaging member, and an inking subsystem. The electrophotographic subsystem comprises a photoreceptor, a charging subsystem, an exposure subsystem, and a development subsystem. In operation, the photoreceptor is charged areawise. An exposure pattern is formed by the exposure subsystem on the surface of the charged photoreceptor to thereby write a latent charge image onto the photoreceptor surface. The image is developed with an image definition material, such as a dampening fluid. The image definition material forms a positive pattern of the image to be printed. The image pattern is then transferred to the reimageable surface. The transferred pattern is then developed by selectively applying an ink over regions of image definition material. The inked image may be transferred to a substrate.
摘要:
A positive-working lithographic printing plate precursor is disclosed which comprises on a support having a hydrophilic surface or which is provided with a hydrophilic layer a heat and/or light-sensitive coating including an infrared absorbing agent, a compound including a blocked isocyanate group and an alkali soluble resin comprising a monomeric unit including a Lewis base moiety.
摘要:
Lithographic printing plates can be obtained by contacting infrared radiation-imaged negative-working lithographic printing plate precursors with a processing solution having a pH less than 9 and comprising a UV photoinitiator. After this processing, the lithographic printing plate is floodwise exposed with UV radiation. Providing a UV-photoinitiator in the processing solution followed by UV exposure can increase imaging sensitivity and printing plate run-length, and reduce print background.
摘要:
A method is described for producing an imaged lithographic printing plate, wherein the developer comprises a hydrophilic polymer comprising (m1) structural units derived from at least one compound comprising both a polyalkylene oxide chain and a free radical polymerizable group, and (m2) structural units derived from at least one compound copolymerizable with the free radical polymerizable group of (i) and comprising at least one functional group with pKs
摘要:
A lithographic printing plate precursor is provided that exhibits less blooming without using a specific polymerization initiator, infrared radiation absorbing agent and the like. The lithographic printing plate precursor comprises a substrate having thereon an image forming layer comprising a radiation-sensitive composition which comprises a radical polymerizable component, an infrared radiation absorbing agent and a radical polymerization initiator, wherein the radiation-sensitive composition comprises a fluorinated copolymer substantially having no hydrophilic moiety.
摘要:
Negative-working imageable elements can be imaged and processed to provide lithographic printing plates. These imageable elements are sensitive to infrared radiation but are insensitive to “white” light and thus can be more easily handled under white light conditions. These properties are possible by incorporating a filter dye having a λmax of from about 300 to about 500 nm into the imageable layer of the imageable elements.
摘要:
A lithographic printing plate precursor includes: a support; and an image-recording layer containing (A) a polymerization initiator, (B) a sensitizing dye and (C) a polymerizable compound, and the image-recording layer or an undercoat layer which is optionally provided between the support and the image-recording layer comprises (D) a polymer compound comprising (a1) a repeating unit having a side chain having a structure represented by the following formula (a1-1) and (a2) a repeating unit having a side chain having at least one structure of the formulae (a2-1), (a2-2), (a2-3), (a2-4), (a2-5) and (a2-6) as defined herein.
摘要:
A variable lithographic inking system includes a chamber blade system configured to supply ink to an anilox member of an inking system. The inking system includes a soft ink transfer roll and a hard form roll. Ink is transferred from the anilox roll to the form roll by way of the transfer roll, and from the form roll to a reimageable surface layer of an imaging member of a variable data lithographic system. An ink layer free of ink history is uniformly applied onto a surface of the form roll, and subsequently transferred to the reimageable surface layer while avoiding or substantially eliminating image ghosting related to inking non-uniformities.
摘要:
Particular embodiments include method embodiments and apparatus embodiments. One method embodiment comprises: placing a printing plate on an imaging device; imaging the plate according to imaging data; and applying UV radiation using a plurality of UV emitting LEDs during the process of imaging of the printing plate. In one embodiment, the plate initially has ablatable material, and wherein the imaging includes ablating ablatable material on the plate according to the imaging data to form an ablated plate, and wherein the applying the UV radiation includes exposing the ablated plate to UV radiation to cure the plate. In one embodiment, the imaging device is an external drum imager that includes a drum that rotates during imaging.