Abstract:
A method of braking a vehicle which includes ground engaging wheels, and a braking system with ABS capability and including an operator actuated brake control, the ABS becoming operative in response to the operator actuating the brake control, and upon the braking system sensing the slippage or impending slippage of at least one of the ground wheels relative to the ground, to vary the braking force applied to the at least one of the wheels between, in alternative periods, an applied state in which the braking force is applied, and a released state in which the braking force is released, and characterised in that the method includes applying torque to assist acceleration of the wheel at least during periods in which the braking force is released by the ABS.
Abstract:
A system is provided for controlling the inertia of a vehicle's powertrain during sudden braking events. Torque generated by rapid deceleration of the vehicle's drive wheels during braking is prevented from being transmitted through the vehicle's driveline by a clutch which disengages the drive wheels from high effective inertia components in the driveline. The clutch is actuated by a signal produced by any of several sensors on the vehicle which sense a sudden braking event. Driveline speed is adjusted to match drive wheel speed before the clutch is deactivated to reengage driveline with the drive wheels.
Abstract:
A system is provided for controlling the inertia of a vehicle's powertrain during sudden braking events. Torque generated by rapid deceleration of the vehicle's drive wheels during braking is prevented from being transmitted through the vehicle's driveline by a clutch which disengages the drive wheels from high effective inertia components in the driveline. The clutch is actuated by a signal produced by any of several sensors on the vehicle which sense a sudden braking event. Driveline speed is adjusted to match drive wheel speed before the clutch is deactivated to reengage driveline with the drive wheels.
Abstract:
A method and an arrangement for controlling the drive unit of a vehicle are suggested. In a first step, input quantities, which are independent of the drive unit, are applied to form a first input quantity. In a second step, a second input quantity is formed from at least this first input quantity and at least one engine-specific input quantity, the second input quantity influencing at least an actuating quantity of the drive unit. In addition, an interface is described between the engine-independent part and the engine-specific part of the engine control.
Abstract:
A method of controlling a drive train of a motor vehicle having an engine, wheels, a wheel slip control system, and an automatic transmission having a clutch, the clutch capable of being opened and closed, wherein the automatic transmission is controlled based upon signals generated by the wheel slip control system.
Abstract:
An engine brake control device comprising a fuel cutting unit, slippage detecting unit, and a control unit, whereby, when an engine braking operation is underway, the fuel cutting unit stops the supply of fuel to the engine, but if a slippage of the driven wheels of the vehicle is detected by the slippage detecting unit, while the fuel cutting operation is being executed by the fuel supply cutting unit, the control unit prohibits the operation of the fuel supply cutting unit, and therefore, when a slippage of the driven wheels is caused by an engine braking operation, fuel is fed into the engine and the slippage of the driven wheel is prevented.
Abstract:
The antilock brake control device is used in a vehicle including: a motor to drive a wheel; a wheel bearing to transmit a rotation of the motor to the wheel and to rotationally support the wheel; and a friction brake to urge a press member against a brake rotor provided in each wheel, to generate a frictional force to brake the wheel. The antilock brake control device includes slip ratio monitor to monitor a slip ratio of the wheel; and driving torque addition section to add a torque in a driving direction to a torque command value for the motor when the slip ratio monitored by the slip ratio monitor exceeds a target slip ratio. When the torque in the driving direction is added to the torque command value for the motor, the friction brake is not operated.
Abstract:
A method and system for promoting a uniform driving style. A longitudinal speed of a motor vehicle and a route section curvature radius lying ahead of the vehicle are determined when the vehicle approaches the route section. An expected lateral acceleration is determined from the curvature radius and longitudinal speed as the route section is driven through. The lateral acceleration is compared with a permanently predefined lateral acceleration limiting value which can be predefined by the driver. In the event the expected lateral acceleration is greater than at least one of the lateral acceleration limiting values, the longitudinal speed is lowered by an optical, acoustic and/or haptic request to the driver and/or by autonomous braking intervention. If the expected lateral acceleration is smaller than or equal to the lower of the two lateral acceleration limiting values the lowering of the longitudinal speed is reduced by decreasing the engine drag torque.
Abstract:
A method for detecting and correcting vehicle reference speed, in particular when the speed undergoes a controlled reduction due to drag or regeneration torque, of an all-wheel drive vehicle. The longitudinal acceleration of the motor vehicle, and the wheel accelerations are determined by sensors. The method is to provide reliable determination of the vehicle reference speed and the initiation of corrective measures once a controlled reduction has been recognized. The steps include filtering the wheel accelerations, filtering the longitudinal accelerations, forming a corrected longitudinal acceleration by applying a safety offset and a correction offset to the filtered longitudinal acceleration, and temporal integration of the difference between the corrected longitudinal acceleration and the respective wheel acceleration. In the event a threshold value of the absolute value of the difference is exceeded during a predetermined time interval with a preset number of wheels, step for adjusting the correction offset are initiated.
Abstract:
In a method for assisting the calculation of vehicle speed in a vehicle that comprises an axle differential on at least one vehicle axle and a braking device for decelerating individual wheels of the vehicle axle, in the case of deceleration of the vehicle via the drive train, one wheel of the vehicle axle is additionally decelerated by way of the braking system, the rotation speed of the oppositely located wheel being taken as the basis for ascertaining the vehicle speed.