Abstract:
The method for transporting a payload to a target location, comprises the following steps of providing a hybrid airship comprises a buoyancy enclosure, a gondola carried by the buoyancy enclosure and a payload carrier, and at least one propeller; flying the hybrid airship carrying the payload to a target location, flying the hybrid airship carrying the payload comprising generating a lift force with the at least one propeller. Flying the hybrid airship carrying the payload comprises tilting the longitudinal axis of the buoyancy enclosure to a positive pitch to generate an aerodynamic lift force when the hybrid airship carrying the payload moves longitudinally.
Abstract:
The present invention concerns hybrid airship comprising at least one buoyancy enclosure containing a gas lighter than air, a gondola attached below the buoyancy enclosure, the gondola extending along a longitudinal axis, at least one propeller configured to propel the hybrid airship, the at least one propeller being attached to the buoyancy enclosure, at least one generator, configured to provide power to the propeller, the generator being connected to the gondola. The hybrid airship comprises an arm protruding from the gondola and connecting the generator to the gondola.
Abstract:
Disclosed is a high altitude space launcher system for transferring payloads from surface to orbit at a significantly lower cost than conventional rockets. It comprises a aerostat lifted one stage light gas gun operating in stratosphere that shoots rocket assisted projectiles containing payload at near orbital velocities to a low angle trajectory. Alternatively, to launch acceleration sensitive payloads such as astronauts the light gas gun is replaced with a muzzle loaded conventional gun that shoots a single stage rocket at a much lower velocity. The system is mostly static structure, attached to a tether-elevator that moors it to land or a ship and provided it with electricity and lifts the projectiles to the gun.
Abstract:
A wind-powered unmanned underwater vehicle (UUV) system can include a kite subsystem configured to be powered by wind energy, a control pod coupled with the kite sub-system and configured to control the kite sub-system, a payload platform configured to provide a mechanical structure on which at least one module may be mounted, a submersible UUV, and a coupling device configured to physically couple between the kite sub-system and the submersible UUV.
Abstract:
An airship hull is disclosed. The airship hull comprises a gas-tight shape fabricated from a membrane. The airship hull comprises one or more fibers applied to an outer surface of the gas-tight shape in a continuous manner such that a particular one of the one or more fibers wraps around a circumference of the gas-tight shape multiple times, wherein the applied one or more fibers are affixed to the outer surface of the gas-tight shape.
Abstract:
A hybrid VTOL vehicle having an envelope configured to provide hydrostatic buoyancy, a fuselage attached to the envelope and having at least one pair of wings extending from opposing sides thereof to produce dynamic lift through movement, and a thrust generation device on each wing and configured to rotate with each wing about an axis that is lateral to a longitudinal axis of the envelope to provide vertical takeoff or landing capabilities. Ideally, the envelope provides negative hydrostatic lift to enhance low-speed and on-the-ground stability. A vehicle comprising a first lift device capable of providing hydrostatic lift; a second lift device capable of providing dynamic lift through movement; and a system structured to generate thrust coupled to the second lift device, the second lift device and the thrust generation system capable of rotating together about an axis that is lateral to a longitudinal axis of the vehicle at angles at least in the range of 90 degrees to and including 180 degrees.
Abstract:
A hybrid VTOL vehicle having an envelope configured to provide hydrostatic buoyancy, a fuselage attached to the envelope and having at least one pair of wings extending from opposing sides thereof to produce dynamic lift through movement, and a thrust generation device on each wing and configured to rotate with each wing about an axis that is lateral to a longitudinal axis of the envelope to provide vertical takeoff or landing capabilities. Ideally, the envelope provides negative hydrostatic lift to enhance low-speed and on-the-ground stability.
Abstract:
An air vehicle such as an airship is provided, having a rounded top portion, and the bottom portion of which has a substantially planar shape, including a region having a smaller inclination, which is referred to as a bottom surface, and the surface area of which is larger than that of an intermediate region having a greater inclination, referred to as an intermediate surface. The general shape produces, due to relative wind, a resulting overall downward force near the ground. The vehicle also includes a device for anchoring same to the ground, the anchoring device being stationary or controllable from the vehicle, located at the front portion of the vehicle, and projecting downward, in particular a ram including a portion which can be expanded by applying a bar against a translatably movable shoulder. Also included is a landing method implementing such a vehicle.
Abstract:
An aerial vehicle including a collapsible and inflatable vehicle body capable of being filled with a lighter than air gas so as to make the vehicle semi-buoyant or 100% buoyant at a predetermined altitude in an atmosphere above a solar system body. The vehicle body has a shape suitable to provide aerodynamic lift. The vehicle may include a propulsion device coupled to and extending from the vehicle body, where the device provides power to aerodynamically lift the vehicle above the 100% buoyant altitude to a higher altitude where the vehicle can maintain that altitude through the aerodynamic lift and vehicle buoyancy. The vehicle is configured to be deployed/inflated from a collapsed and stowed configuration to a deployed/inflated configuration in an orbit above the atmosphere of the solar system body, and is configured to enter the atmosphere in the inflated configuration and descend without propulsion.
Abstract:
An air vehicle comprises a vehicle body and a propulsion assembly. The vehicle body has the shape of a wing airfoil so that the vehicle body generates lift when air flows over the vehicle body. The vehicle body has a body longitudinal axis, and includes a first hull and a second hull that are secured together side-by-side, the hulls having longitudinal axes that are substantially parallel to the body longitudinal axis. Each hull defines a separate fluid chamber that is filled with a fluid that is at least partially buoyant. The propulsion assembly is secured to the vehicle body. The propulsion assembly generates thrust and includes a port front engine, a port rear engine, a starboard front engine, and a starboard rear engine, wherein at least two of the engines have independently controlled thrust vectors.