Abstract:
An elevator system for a multistory structure having a plurality of elevator shafts is shown which includes at least one independently movable elevator car in each elevator shaft. A digital computer with memory is used to control elevator cars including the dispatch of cars from terminal floors. A daily control parameter table in memory identifies a plurality of different methods of scheduling dispatch of elevator cars from terminal floors, groups of floors to be serviced by each elevator car, and cars in a shaft to be coupled for tandem operation. The memory is periodically read for selecting for each elevator car one of said methods of scheduling dispatch and for identifying the group of floors to be serviced by the cars. The selected method of scheduling the dispatch of cars is implemented and cars are limited to servicing the selected group of floors. One method of scheduling dispatch includes obtaining a measure of estimated passenger demand for travel in one direction that is incapable of being met by cars currently in service. A passenger loading threshold limit for travel in the one direction is selected which may range from zero to maximum capacity of the elevator car to be dispatched. When the measure of estimated passenger demand for travel in the one direction that is incapable of being met by cars currently in service equals the passenger loading threshold limit a car dispatch signal is issued for dispatch of a car from the terminal floor. Where a plurality of independently-operated cars are included in a hoistway, operation in either a coupled or decoupled manner is provided.
Abstract:
A system and method for controlling an elevator group including several elevators and related call devices which controls each elevator in a manner determined by the calls entered and the existing control instructions. When the control system has to decide between two or more control alternatives, a systematic decision analysis is performed by studying the effects resulting from each alternative decision, the effects resulting from each alternative decision, the effects being estimated by simulating by a Monte-Carlo type method the future behavior of the elevator system in the case of each alternative decision. To carry out the simulation, realizations are generated at random for the unknown quantities associated with the current state of the elevator system and for new external future events, and a control decision is made on the basis of the results of the decision analysis.
Abstract:
An elevator system is shown that includes an elevator shaft (12) in building (10) and a plurality of elevator cars (C.sub.1, C.sub.2 and C.sub.3) that are movable up and down within the shaft along vertical axis (20). The elevator cars are independently movable by drive motors (D.sub.1, D.sub.2 and D.sub.3) attached to the cars through hoisting cables (24, 28 and 34). The motors are controlled by motor controllers (MC.sub.1, MC.sub.2 and MC.sub.3) which, in turn are controlled by a computer (62) having as inputs service and destination requests, load weight and car location. Different operating modes are shown (FIGS. 5-8) including one in which serviced floors (F.sub.1 through F.sub.16) are serviced by no more than one elevator car at a time, and the cars travel sequentially from one end floor to the other end floor (FIGS. 5 and 6). Simultaneous servicing of a plurality of different floors is shown (FIGS. 7 and 8) and travel of empty elevator cars to a designated floor without responding to floor calls also is shown (FIGS. 6 and 8). Counterweights (CW.sub.1, CW.sub.2 and CW.sub.3) are attached by cables to the respective elevator cars (C.sub.1, C.sub.2 and C.sub.3), which counterweights travel along a vertical axis (38) laterally displaced from the elevator car axis (20). Shock absorbers (54) are provided for absorbing impact of accidental collision between adjacent counterweights (FIG. 3 ) which shock absorbers include coil springs (58) and dashpots (60).
Abstract:
A method of controlling a group of elevators allocates target calls definitively and immediately to the individual elevators for serving the call according to higher rank and lower rank function requirements and these allocations are indicated immediately at the call input floors. A weighted sum corresponding to higher rank function requirements is formed from partial operating costs, this sum is modified into operating costs in the sense of lower rank function requirements by means of variable bonus and penalty point factors and a target call is allocated to the elevator with the lowest operating costs. A target call allocation algorithm with subordinate algorithms for the bonus and penalty point tracking and the costs computation implements this method in a computer. The bonus and penalty point factors are continuously made to follow the traffic volume or the car load group by group or elevator by elevator with the tracking algorithm. The computation of the operating costs takes place in the costs computation algorithm according to a special costs formula, wherein the readjusted bonus and penalty point factors act multiplicatively on a six term partial costs sum.
Abstract:
Factors (IFL, UPK, DPK) indicative of the relative need for an elevator system to be operating in off-peak, up-peak and down-peak modes, respectively, are compared and if the relative need for up-peak is greater than for off-peak or down-peak, the ratio of up-peak need to total need is utilized to assign a proportionate number of elevator cars to up-peak service. Cars are chosen for up-peak service based upon the estimated relative speed with which the cars will be able to return to the lobby. The details of one embodiment include determining interfloor traffic by examining expected destinations of passengers estimated to be waiting behind hall calls and examining the lobby and non-lobby car calls which are registered.
Abstract:
An elevator system employing a micro-processor-based group controller (FIG. 2) communicating with the cars (3, 4) to assign cars to hall calls based on a Relative System Response (RSR) approach. However, rather than using unvarying bonuses and penalties, the assigned bonuses and penalties are varied using "artificial intellience" techniques based on combined historic and real time traffic predictions to predict the number of people behind a hall call, and, calculating and using the average boarding and de-boarding rates at "en route" stops, and the expected car load at the hall call floor. Prediction of the number of people waiting behind hall calls for a few minute intervals are made using traffic levels measured during the past few time intervals on that day as real time predictors, using a linear exponential smoothing model, and traffic levels measured during similar time intervals on previous similar days as historic traffic predictors, using a single exponential smoothing model. The remaining capacity in the car at the hall call floor is matched to the waiting queue using a hall call mismatch penalty. The car stop and hall stop penalties are varied based on the number of people behind the hall call and the variable dwell times at "en route" stops. The stopping of a heavily loaded car to pick up a few people is penalized using a car load penalty. These enhancements to RSR result in equitable distribution of car stops and car loads, thus improving handling capacity and reducing waiting and service times.
Abstract:
An elevator control system employing a micro-processor-based group controller (FIG. 2), which communicates with the cars (3, 4) of the system to determine the conditions of the cars, and responds to hall calls registered at a plurality of landings in the building serviced by the cars under control of the group controller, assigning hall calls to cars based on the summation for each car, relative to each call, a weighted summation of a plurality of system response factors, some indicative, and some not, of conditions of the car irrespective of the call being assigned, assigning varying "bonuses" and "penalties" to them in the weighted summation. "Artificial intelligence" techniques are used to predict traffic levels and any crowd build up at various floors to better assign one or more cars to the "crowd" predicted floors, either parking them there, if they were empty, or more appropriately assigning car(s) to the hall calls. Traffic levels at various floors are predicted by collecting passengers and car stop counts in real time and using real time and historic prediction for the traffic levels, with single exponential smoothing and/or linear exponential smoothing. Predicted passenger arrival counts are used to predict any crowd at fifteen second intervals at floors where significant traffic is predicted. Crowd prediction is then adjusted for any hall call stops made and the number of passengers picked up by the cars. The crowd dynamics are matched to car assignment, with one or more cars being sent to crowded floor(s).
Abstract:
Apparatus for generating dispatching signals for a group of elevators operating between two terminals. The dispatching signals are generated at intervals computed in accordance with an estimated number of passengers the next car to be dispatched from each terminal will carry. This estimate is based on the actual number of passengers carried by previously dispatched cars. By functioning in this manner the apparatus distributes the passengers between the cars.
Abstract:
An elevator car group control system for controlling a plurality of elevator cars arranged for parallel operation for serving a plurality of service floor landings of a building, comprising means for selecting suitable ones of the cars for serving hall calls, and means for forecasting the length of time required for each of the selected cars to arrive at each of the allotted hall call originating floors and displaying the forecast waiting time on display means disposed at the landing of each of the floors. In the invention, the serving car selecting means comprises means for detecting for each car the number of floors subject to change in forecast waiting time displayed at each of the already allotted floors when a new hall is originated from one of the floors, and means for preferentially selecting the car detected to provide a smaller number of floors subject to such change than the others. That is, in response to the origination of a new hall call, the number of floors subject to change in already displayed forecast waiting time due to the allotment of the new hall call is detected for each of the cars, and the car providing a smaller number of floors subject to such change than the others is preferentially selected to respond to the new hall call.
Abstract:
An elevator system including an elevator controller configured for: effecting a first communication with a mobile device to receive data from an electronic calendar that is activated on the mobile device, rendering a plurality of determinations from the first communication, including: a first determination that a first entry in the electronic calendar indicates that a passenger associated with the mobile device has a first scheduled event that occurs at a first scheduled time, a second determination to effect elevator service proximate to the first scheduled time to the passenger, and effecting a second communication with the elevator car to thereby effect the second determination.