Abstract:
The ratio of the intensity of two light beams is determined by an apparatus which includes a chopper wheel for chopping one of the light beams, a photodetector for detecting the intensity of both light beams applied simultaneously thereto, and a logarithmic amplifier for amplifying the current produced by the photodetector. The AC component of the logarithmically amplified current represents the ratio of the intensity of the two light beams.
Abstract:
An apparatus to measure the difference in intensity between periodically recurring reference and measure light pulses of different wavelength reaching a photomultiplier tube, the apparatus having alternately keyed steady voltage-generating circuits keyed in synchronism with the light pulses and generating concurrent steady d.c. electrical signals with amplitudes corresponding to the light pulse intensities which are furnished to the respective inputs of a differential amplifier. The output of the differential amplifier is therefore a steady signal representing the difference in intensity between the reference and measure light pulses.
Abstract:
A manually operable direct reading apparatus and method providing reflectance measurements in two spectral modes, for example red and green without the use of high speed rotating filters, light choppers and synchronizing devices. The signal corresponding to one of these modes is stored in a memory for comparison with the signal from the other mode. Ratios between these modes are automatically computed and displayed either as a mathematical ratio or as a numerical value.
Abstract:
In a flicker-type photosensing device, photosensor dark current is corrected for by applying the output of the photosensor to a current-to-voltage mode amplifier including a special dark current correction loop. In particular, the amplifier has connected between its input and output terminals a loop including a resistor, a grounded capacitor, a gating arrangement adapted to close the loop only during those periods when no light beam is applied to the photosensor, and a second resistor for limiting the capacitor charging rate. In operation, the capacitor charges while the gate is closed during the dark period; and, during pulse periods when the gate is open, it discharges to reduce the photosensor current by an amount nearly equal to the dark current.