Abstract:
To improve high-definition and high-density display in a flat display device, and reduce driving power, namely, power consumption. First and second substrates 1 and 2 are disposed so as to oppose each other, and a discharge maintaining electrode group 5, which is constituted so that plural pairs of discharge maintaining electrodes 3 and 4 are disposed, is formed on the first substrate 1, and an address electrode group, which is constituted so that a plurality of address electrodes are disposed, is formed on the second substrate. Particularly plasma discharge display is executed by mainly utilizing cathode glow discharge so that spacing between the electrodes is made to be narrow, and high-definition and high-density display is possible.
Abstract:
Hollow cathode type color PDP, is disclosed, including a front panel having an electrode formed on a front substrate, and a first dielectric film and a protection film formed in succession on an entire surface of the electrode, and a rear panel having a second dielectric film formed on a rear substrate to a thickness opposite to the front panel, a well region formed by etching the second dielectric film to a depth, and an address electrode and a fluorescent material film stacked in succession on an inside surface of the well, thereby allowing a larger discharge area in the discharge cell compared to the related art PDP, which improves a luminance.
Abstract:
A plasma display panel includes a front substrate; a plurality of row electrodes provided on an inner surface of the front substrate; a dielectric layer provided on the inner surface of the front substrate so as to cover the row electrodes; a rear substrate spaced apart from the front substrate to form a discharge space therebetween; a plurality of column electrodes provided on an inner surface of the rear substrate; a fluorescent material layer covering the column electrodes, the fluorescent material layer including red, green and blue emitting portions. The width of a column electrode is set to be different from others, corresponding to a different portion of the fluorescent material layer covering the column electrode.
Abstract:
A plasma display panel has a first substrate, plural pairs of display electrodes, a second substrate, and plural data electrodes. Each pair of the display electrodes is made up of a scanning electrode and a sustain electrode which are arranged parallel to each other on the first substrate. The second substrate is disposed opposite to the first substrate. A discharge space is formed between the first substrate and second substrate. The data electrodes are arranged in a direction perpendicular to the display electrodes on the second substrate. The data electrode is wider in peripheral portion of the second substrate than in a central portion of the second substrate.
Abstract:
A plasma display device includes plasma display panel and a data driver. Plasma display panel includes a front substrate and a rear substrate faced to each other to form a discharge space therebetween. The front substrate includes a plurality of display electrodes, each having scan electrode and sustain electrode. The rear substrate includes a plurality of data electrodes intersected with the display electrodes. Discharges cells are formed at the intersections of the display electrodes and data electrodes. Data electrodes have a plurality of main electrode parts) formed in portions facing the display electrodes, and wiring parts that connect main electrode parts and have a width smaller than the widths of main electrode parts. Further, the corner of main electrode part is chamfered.
Abstract:
An electrode-forming composition and a plasma display panel manufactured using the electrode-forming composition are provided. The electrode-forming composition includes: frit, a metal powder, and a vehicle, wherein the metal powder and the frit are contained in a weight ratio of 52 to 62:5 to 15; the plasma display panel including: first and second substrates that face each other with a predetermined distance between; a first electrode formed on the first substrate and extending in a first direction; a dielectric layer formed on the first substrate to cover the first electrode; a second electrode spaced apart from the first electrode, formed on the second substrate, and extending in a second direction crossing the first direction; a barrier rib in a space between the first substrate and the second substrate where the barrier rib defines a plurality of discharge cells; and a phosphor layer formed within each discharge cell, wherein the first electrode includes an insulating glass lager along an edge in the first direction.
Abstract:
Each of the red, green and blue column electrodes has widened portions each having a row-direction width larger than that of the other portions. Each of the widened portions faces a head portion of each of the transparent electrodes of a pair of row electrodes constituting each row electrode pair. The widened portion of the green column electrode facing the green discharge cell provided with the green phosphor layer is located in a different position in the column direction from a position of each of the widened portions of the red and blue column electrodes respectively facing the red and blue discharge cells respectively provided with the red and blue phosphor layers.
Abstract:
A Plasma Display Panel (PDP) includes a dielectric layer having a plurality of dielectric-layer perforated holes arranged in a matrix; and upper and lower electrode layers having electrode-layer perforated holes connected to the dielectric-layer perforated holes and arranged on both surfaces of the dielectric layer; the upper electrode layer includes a plurality of first electrodes extending in a first direction, the plurality of first electrodes surrounding a group of electrode-layer perforated holes arranged in the first direction; and the lower electrode layer includes a plurality of second electrodes extending in a second direction different from the first direction, the plurality of second electrodes surrounding a group of electrode-layer perforated holes arranged in the second direction. Individual electrodes surrounding the electrode-layer perforated holes protrude from the dielectric layer toward the centers of the perforated holes such that a facing discharge is generated between the upper and lower individual electrodes, resulting in a PDP having stable characteristics and high efficiency and having a simple structure.
Abstract:
In a plasma display panel first and second substrates are located apart and substantially parallel to each other. A barrier rib layer is located between the first substrate and the second substrate. Discharge cells having various cross-sectional areas are formed within the barrier rib layer. Phosphor layers are formed within the discharge cells. Ring shaped first and second electrodes, conforming to the cross-sectional area of the discharge cells, surround the discharge cells adjacent to one or the other of the first and second substrates. The first electrodes are coupled together along a first direction and the second electrodes are coupled together along the same first direction. Address electrodes extend in a direction crossing the first direction and include protruding portions conforming to inner contours of the discharge cells.
Abstract:
A plasma display panel may include a first substrate, a second substrate opposite to the first substrate with a predetermined space therebetween, the space being partitioned into a plurality of discharge cells, a phosphor layer formed in the discharge cells, address electrodes extending in a first direction on the first substrate to correspond to the discharge cells, and a first electrode and a second electrode extending in a second direction crossing the first direction at the first substrate side, spaced apart from the address electrodes, formed opposite to each other, and projecting toward the second substrate with a discharge space formed therebetween, wherein the address electrodes include protrusions disposed adjacent to the second electrodes and protruding toward the inside of the discharge cells, and wherein at least one of the first electrode and the second electrode includes protrusions protruding toward an inside of a respective one of the discharge cells.