Abstract:
Optical films are described that comprise an antistatic primer disposed on the substrate and a high refractive index layer disposed on the primer. The primer comprises a sulfopolymer and at least one antistatic agent. The high refractive index layer comprises surface modified inorganic nanoparticles dispersed in a crosslinked organic material. The antistatic agent is preferably selected from conductive inorganic particles, conductive polymer, and mixtures thereof. Also describes are antistatic compositions and surface treated conductive inorganic oxide particles.
Abstract:
A plasma display panel includes a front substrate having a first color, a rear substrate facing the front substrate, barrier ribs disposed between the front and rear substrates and defining discharge cells, the barrier ribs having a second color, phosphor layers disposed in the discharge cells, display electrodes arranged on the front substrate and extending in a first direction, the discharge electrodes corresponding to the discharge cells, a dielectric layer disposed on the front substrate and covering the display electrodes, the dielectric layer having a third color, address electrodes arranged on the rear substrate and extending in a second direction crossing the first direction, the address electrodes corresponding to the discharge cells, and a filter disposed on the front substrate and having a fourth color. The first through fourth colors realize a subtractive color mixture through a complementary coloring with each other.
Abstract:
A light-transmitting electromagnetic wave shielding film which is a conductive silver thin film with a metallic silver portion formed on a support in a meshy state, wherein the metallic silver portion formed in the meshy state has a line width of 18 μm or less, an opening rate of 85% or more, an Ag content of 80 to 100% by mass and a surface resistance value of 5 Ω/sq or less. This light-transmitting electromagnetic wave shielding film has characteristic features that it has a high electromagnetic wave shielding property and a high transparency at the same time and the meshy portion is black.
Abstract:
Electromagnetic Interference (EMI) shields for a direct-view display having a direct-view display panel and an outer panel that provides an outer surface for the direct-view display. These EMI shields include a conductive mesh having an array of gaps therein. The conductive mesh is configured to shield at least some of the EMI that is emitted by the direct-view display panel. An optical redirecting structure is also included, that is configured to redirect at least some optical radiation that is emitted from the direct-view display panel that would strike the conductive mesh, through the gaps in the conductive mesh. The EMI shield is configured to mount between the direct-view display panel and the outer panel such that the optical redirecting structure is adjacent the direct-view display panel and the conductive mesh is remote from the direct-view display panel.
Abstract:
A combination of filters for filtering selected wavelengths of electromagnetic radiation is provided on a transparent substrate such as a plastic film or glazing of a window. The combination of filters prevents or attenuates the passage of wavelengths through the substrate into a building, where the passage of the wavelengths into the building could adversely affect people or machinery within the building. The combination of filters is useful improve wireless networks performance by blocking or attenuating undesired electromagnetic interference, and radio frequency interference.
Abstract:
An electroconductive laminate comprising a substrate and an electroconductive film formed on the substrate, wherein the electroconductive film has a multilayer structure having a high refractive index layer containing an inorganic compound and a metal layer alternately laminated from the substrate side in a total layer number of (2n+1) (wherein n is an integer of from 1 to 12); the refractive index of the inorganic compound is from 1.5 to 2.7; the metal layer is a layer containing silver; the total thickness of all metal layer(s) is from 25 to 100 nm; and the resistivity of the electroconductive film is from 2.5 to 6.0 μΩcm.
Abstract:
A transparent and conductive laminate that is substantially decreased in reactive defects, and a display filter, a heat-ray reflecting film and an electromagnetic wave-shielding film comprising the laminate are provided. The laminate includes a transparent substrate, a transparent conductive thin-film layer containing silver, and a protective layer containing a binder material and inorganic fine particles, wherein the transparent conductive thin-film layer is in contact with the protective layer. The generation of reflective defects can be outstandingly reduced. Therefore, a laminate superior in electromagnetic wave-shielding ability, heat-ray reflecting ability and visibility for a long period of time and products comprising the laminate can be obtained.
Abstract:
A display panel device includes a front sheet that is glued on a front face of a plasma display panel. The front sheet includes a mesh made of a light shield member that has a blackened front surface and a plane size larger than a screen. A length between diagonal lattice points of the mesh is shorter than a cell pitch that is longer one of the cell pitches in the vertical direction and the horizontal direction of the screen. An arrangement direction of the mesh is inclined with respect to an arrangement direction of the cells in the screen.
Abstract:
A filter capable of improving its ability of shielding electromagnetic wave easily by suppressing variations in the electrical connection between the filter and a chassis without putting stress on a display panel and a plasma display device using the same are provided. In the plasma display device, a directly-attached filter has a filter contact part to be connected with the chassis, and a convex portion convexing towards the chassis is formed on the filter contact part to make secure connection with a gasket for connecting the directly-attached filter and the chassis.
Abstract:
An electromagnetic interference (EMI) shielding filter includes a conductive pattern for shielding electromagnetic waves; and blackened layers formed on a surface of the conductive pattern. The electromagnetic interference (EMI) shielding filter is manufactured by preparing a base film; forming on the base film a first blackened layer, a conductive layer, and a second blackened layer in sequence; and patterning the first blackened layer, the conductive layer, and the second blackened layer by using a same mask, and forming on front and rear surfaces of an EMI shielding layer a conductive pattern comprising the first and second blackened layers.