Abstract:
An electrostatic pump includes two electrodes, which are spaced apart essentially in the pump flow direction and which are adapted to have applied thereto a potential for injecting an ion current flowing between the two electrodes. For further microminiaturization of the pump, the pump includes two semiconductor components, which are arranged one on top of the other in the pump flow direction and which are so structured that the electrodes form an integral constituent part of the semiconductor components.
Abstract:
An ion pump comprises a pump casing inserted in a magnetic field, with an anode supported by insulators in the pump casing. Both the pump casing and anode are made of alminum-based metals, and the pump casing serves also as a cathode, thereby the ion pump has a simpler structure and functions more efficiently than the conventional ones.
Abstract:
A FLUERIC DEVICE FOR CONVERTING ELECTRICAL ENERGY INTO FLUID ENERGY AND VICE VERSA. THE BASIC DEVICE IS OF A LAMINATE STRUCTURE COMPRISED OF TWO ELECTRICALLY CONDUCTIVE, CHANNELLED ELECTRODE MEMBERS, AN EMITTER AND A RECEIVER, WHICH ARE SPACED A GIVEN DISTANCE FROM EACH OTHER AND JOINED BETWEEN LAYERS OF ELECTRICALLY INSULATING MATERIAL. THE CHANNELS OF THE EMITTER AND RECEIVER ARE ALIGNED SO AS TO FORM A FLOW PASSAGE THROUGH THE DEVICE.
A DIRECT CURRENT ELECTRIC POWER SUPPLY IS IMPRESSED BETWEEN THE EMITTER AND RECEIVER TO CAUSE A FLOW OF IONS FROM THE EMITTER TO THE RECEIVER WHICH CAUSES FLUID TO BE PULLED FROM AN INLET THROUGH THE CHANNELS OF THE EMITTER AND RECEIVER AND OUT AN EXIT OF THE DEVICE.
Abstract:
1,087,725. Particle accelerators. UNITED KINGDOM ATOMIC ENERGY AUTHORITY. Nov. 11, 1965 [Nov. 19, 1964], No. 47158/64. Heading H1D. A differential pumping tube arranged in parallel with a D.C. particle accelerator tube and having potential distributing annular electrodes 1 along its length has each electrode comprising a diametral bar 4a, 4b bent out of the plane of the electrode, all the bars being bent towards one end of the tube. An electric field having a component towards the axis of the tube is thereby set up between pairs of adjacent electrodes in order to suppress electron loading. The bars may be bent to V- or arcuate shape and successive bars may be circumferentially displaced through a small angle. Also the inner periphery of each electrode may be bent from the plane of the electrode.
Abstract:
Provided is an ultra-high vacuum forming device containing an ion pump having a compact size in the central axis direction. The ultra-high vacuum forming device (1) is provided with at least one ion pump (100). The ion pump (100) is provided with: a casing (110) having at least one opening (111, 112); a board-shaped electrode group (120) formed by means of a central opening (120a) being formed along a predetermined central axis (C) disposed within the casing (110), and a plurality of electrodes (121) being joined with spaces therebetween; a pair of board-shaped electrodes (131, 132) having a different polarity than that of the electrode group (120) and that are disposed at positions sandwiching both sides of the electrode group (120) within the casing (110); and a pair of board-shaped magnets (141, 142) disposed at positions sandwiching both sides of the pair of board-shaped electrodes (131, 132).
Abstract:
An ion pump includes one or more anode pump cells, a cathode positioned in proximity to the one or more anode pump cells and a magnet assembly for producing a magnetic field in the one or more anode pump cells. An electric field is applied between the cathode and the one or more anode pump cells. The magnet assembly includes primary magnets of opposite polarities disposed on opposite ends of the anode pump cells and secondary magnets disposed on opposite sides of the anode pump cells. The magnet assembly may further include a magnet yoke which provides a magnetic flux return path. The magnet assembly produces a substantially uniform axial magnetic field in the one or more anode pump cells.