Abstract:
Provided is an ultra-high vacuum forming device containing an ion pump having a compact size in the central axis direction. The ultra-high vacuum forming device (1) is provided with at least one ion pump (100). The ion pump (100) is provided with: a casing (110) having at least one opening (111, 112); a board-shaped electrode group (120) formed by means of a central opening (120a) being formed along a predetermined central axis (C) disposed within the casing (110), and a plurality of electrodes (121) being joined with spaces therebetween; a pair of board-shaped electrodes (131, 132) having a different polarity than that of the electrode group (120) and that are disposed at positions sandwiching both sides of the electrode group (120) within the casing (110); and a pair of board-shaped magnets (141, 142) disposed at positions sandwiching both sides of the pair of board-shaped electrodes (131, 132).
Abstract:
An ultra-high vacuum (UHV) system includes a UHV cell and an ion pump to maintain the UHV in the UHV cell. The ion pump has a GCC (glass, ceramic, or crystalline) housing. An interior wall of the ion-pump housing serves as an anode or bears a coating that serves as an anode. At least one cathode is disposed with respect to the housing so that it can cooperate with the anode to form an electric field for establishing a Penning trap. The GCC housing defines a flow channel that extends radially through the anode so that a molecule can flow directly into the most ionizing region of a Penning trap.
Abstract:
A sputter ion pump includes one vacuum chamber, two parallel anode poles and one cold cathode electron emitter. The vacuum chamber includes at least one aperture located in an outer wall thereof. The two parallel anode poles are positioned in the vacuum chamber and arranged in a symmetrical configuration about a center axis of the vacuum chamber. The cold cathode electron emission device is located on or proximate the outer wall of the vacuum chamber and faces a corresponding aperture. The cold cathode electron emission device is thus configured for injecting electrons through the corresponding aperture and into the vacuum chamber. The sputter ion pump produces a saddle-shaped electrostatic field and is free of a magnetic field. The sputter ion pump has a simplified structure and a low power consumption.
Abstract:
An ion pump permits the continuous evacuation of a small-envelope vacuum chamber while drawing a relatively small amount of power (micro watts). In a preferred embodiment, the present ion pump, due to its small size and integration within the vacuum chamber, enables the device in which the vacuum chamber is incorporated to be portable and to retain its original dimensions.
Abstract:
A process for making piezo-electric polyvinylidene fluoride (PVDF) film for use, for example, as diaphragms for telephone transmitters, includes the steps of: (a) stretching the melt-extruded film parallel to the extrusion direction with a stretch ratio of about 4 to 1 at about 120.degree. C. to convert it to a .beta. crystalline form; (b) clamping the film between conductive rubber pads to which the polarizing voltage, e.g. 1.3 kv for 12 .mu.m film is applied. While the voltage is thus applied, the film is heated to about 110.degree. C. for 130 mins. and cooled to ambient with the polarizing filed preset; (c) conductive elastomer electrodes are applied to the film in the desired pattern; and (d) the piezo-electric properties are stabilized by heating the foil to about 90.degree. C. for 2 hours.
Abstract:
A fluidic device is disclosed, comprising an enclosed passage that is adapted to convey a circulating fluid. The enclosed passage comprises a flow unit having a first electrode and a second electrode offset from the first electrode in a downstream direction of a flow of the circulating fluid. The first electrode is formed as a grid structure and arranged to allow the circulating fluid to flow through the first electrode. The fluidic device may be used for controlling or regulating the flow of the fluid circulating in the enclosed passage, and thereby act as a valve opening, reducing or even closing the passage.
Abstract:
An ultra-high vacuum (UHV) system includes a UHV cell and an ion pump to maintain the UHV in the UHV cell. The ion pump has a GCC (glass, ceramic, or crystalline) housing. An interior wall of the ion-pump housing serves as an anode or bears a coating that serves as an anode. At least one cathode is disposed with respect to the housing so that it can cooperate with the anode to form an electric field for establishing a Penning trap. The GCC housing defines a flow channel that extends radially through the anode so that a molecule can flow directly into the most ionizing region of a Penning trap.
Abstract:
An exhaust apparatus and a high vacuum pumping unit including such high vacuum device and an auxiliary vacuum pump are disclosed, wherein a high vacuum is achieved in a vacuum vessel such that the gas molecules within the vacuum vessel are ionized and accelerated to be exhausted and, further, in the high vacuum pumping unit, those gas molecules diffused back or desorbed from the vacuum pump are ionized and accelerated to be returned to the vacuum pump.
Abstract:
Apparatus for ionizing gases at very low pressures comprising inner and outer electrodes wherein the inner electrode is substantially circular in cross section and the outer electrode surrounding the inner electrode may be other than a figure of revolution or may be eccentrically positioned with respect to the inner electrode which inner electrode is less in length than two times the length of the surrounding outer electrode and is spaced therefrom a distance which is greater than the diameter of the inner electrode for a distance of not less than two-thirds the length of the surrounding outer electrode.