Abstract:
An optical system comprises an optical fiber with gain producing core with an index of refraction n1, surrounded by at least one cladding with an index of refraction n2, said cladding including at least one index reduced area with an index of refraction n2, such that n1>n2>n2, the core propagating a signal at a spatial fundamental mode at a signal wavelength λ1 and at a power level sufficient to generate optical power at a wavelength λ2, where λ2>λ1, and the at least one index reduced area in combination with the core provide has at least one cut-off fundamental spatial mode wavelength λC, and λ1 λC.
Abstract:
An optical system comprises an optical fiber with gain producing core with an index of refraction n1, surrounded by at least one cladding with an index of refraction n2, said cladding including at least one index reduced area with an index of refraction n2, such that n1>n2>n2, the core propagating signal at a spatial fundamental mode at a signal wavelength λ1 and at a power level sufficient to generate optical power at a wavelength λ2, where λ2>λ1, and the optical fiber has at least one cut-off fundamental spatial mode wavelength λC, and λ1 λC.
Abstract:
A laser illuminator for use in an inspection system, such as a semiconductor wafer inspection system or photomask inspection system is provided. The gain medium in the illuminator comprises optical fiber, and amplification, beam splitting, frequency and/or bandwidth conversion, peak power reduction, and q-switching or mode locking may be employed. Certain constructs including doped fiber, gratings, saturable absorbers, and laser diodes are disclosed to provide enhanced illumination.
Abstract:
The invention relates to an optical amplifier, in particular for optical fiber telecommunication lines (1), operating with a transmission signal in a predetermined wavelength range, which amplifier comprises a fluorescent active optical fiber (6) doped with erbium, having two cores (11 and 12, 101 and 102), one (11, 101) of which is connected to a fiber (4) in which a transmission signal to be amplified and a luminous pumping energy are multiplexed, and to an outgoing fiber adapted to transmit the amplified signal, whereas the second core (12, 102) is optically coupled to the first core and is capable of absorbing the spontaneous erbium emission which would constitute a noise source, allowing a signal to be amplified in a wavelength range substantially corresponding to the tolerance range of the commercially available signal laser emitters.
Abstract:
An optical amplifier repeater system includes an optical fiber propagating a light beam in a plurality of propagation modes and an optical amplifier repeater amplifying the light beam propagated through the optical fiber. The optical amplifier repeater includes an optical demultiplexer demultiplexing the light beam in the plurality of propagation modes propagated through the optical fiber into a plurality of single-mode light beams, an optical amplifier amplifying, by simultaneous pumping, intensities of the plurality of single-mode light beams using a light beam generated by one pumping light source, an optical multiplexer multiplexing the plurality of single-mode light beams amplified by the optical amplifier into a light beam in the plurality of propagation modes, and an optical intensity adjusting unit adjusting the intensity of each of the plurality of single-mode light beams at least one of before or after the amplification by the optical amplifier. The optical intensity adjusting unit performs the adjustment by amplifying or attenuating the optical intensity of each of the plurality of single-mode light beams in an individual optical path through which the single-mode light beam is propagated.
Abstract:
In optical amplifiers that use a multicore optical fiber, the absorption efficiency of excitation light in an optical amplification medium is low and the amplification efficiency of light intensity becomes lower in the cladding excitation method; therefore, an optical amplification apparatus according to the present invention includes an optical amplification medium, having a gain in a wavelength band of signal light, configured to receive the signal light; excitation light introduction means for introducing, into the optical amplification medium, excitation light to excite the optical amplification medium; and residual excitation light introduction means for introducing, into the optical amplification medium, residual excitation light output from the optical amplification medium, the residual excitation light having a wavelength component of the excitation light.
Abstract:
An optical fiber and an optical amplifier including the optical fiber are disclosed, the optical fiber includes a core region for guiding a propagation of a multimode optical signal, a cladding region laterally surrounding the core region and at least two doped rings, each of the at least two doped rings having a corresponding rare-earth or transition metal dopant concentration. The core region includes a central core having a first refractive index, at least one core layer laterally surrounding the central core, each of the at least one core layer having corresponding internal and external radii, an internal radius of an innermost core layer corresponding to a radius of the central core and an external radius of the outermost core layer corresponding to a radius of the core region.
Abstract:
A pumping light source outputs pumping lights. A pumping light source outputs a pumping light. Optical multiplexers couple the pumping lights to a plurality of cores. The optical multiplexer couples the pumping light to the clad. A pumping light source drive unit drives a pumping light source. A pumping light source drive unit drives a pumping light source. A monitoring unit outputs a monitoring signal indicating a monitoring result of the number of wavelengths used in each of optical signals amplified by the plurality of the cores. The control unit controls the power of the pumping lights based on the monitoring signal. The control unit controls the power of each of the pumping lights in accordance with the number of wavelengths used in each of the optical signals and controls the power of the pumping light so that signal qualities of the optical signals fall within a prescribed range.
Abstract:
An all-fiber laser oscillator comprises a laser cavity, an amplification fiber, a plurality of diode lasers, and at least one side-pump signal-and-pump combiner (combiner). The combiner comprises a double-clad fiber (DCF) and four or more multimode fibers (MMFs). DCF comprises a first taper portion, whereas each of MMFs comprises a second taper portion fused around DCF. MMFs are configured to carry a portion of combined optical energy (COE) and to couple to DCF. The first taper portion can partially compensate a beam divergence created by the second taper portion, thereby increasing a coupling efficiency of COE coupled from MMFs to DCF with improved thermal performance. In a coupling portion, a refractive index difference between MMFs and DCF is configured to form a backward coupling barrier to suppress an optical energy in DCF from coupling into MMFs, thereby protecting the plurality of diode lasers from damage.
Abstract:
The invention relates a power fiber laser system including at least one single-mode fiber laser, emitting at a signal wavelength, the fiber including at least one outer cladding and a core, in which the core of the fiber has a radially graded index. The fiber includes, at least over a part of its length, a geometrical section having a graded fiber-core radius that decreases between an input end of the section and an output end of the section, the core radius and the index variation between the cladding and the fiber at the input end being such that the normalized frequency at the signal wavelength is less than the normalized cutoff frequency at which the fiber becomes unimodal.