Abstract:
An integrated circuit device includes a multi-port piezoelectric-on-semiconductor microelectromechanical resonator, which is configured to support independent and concurrent piezoelectric transduction of multiple resonance modes. The resonator includes a semiconductor resonator body (e.g., Si body) suspended opposite an underlying recess in a substrate. Opposite ends of the semiconductor resonator body are anchored to the substrate. The resonator body may be formed so that a plan layout view of a portion of the semiconductor resonator body is dumbbell-shaped to thereby support acoustic energy trapping of multiple high-Q resonance modes.
Abstract:
An oscillator includes a compensated current source that adjusts an output current based on process, supply voltage, and temperature (“PVT”) variations of an integrated circuit device. The oscillator generates an output signal having a frequency based, in part, on the output current of the compensated current source. Accordingly, the output signal has a relatively low sensitivity to PVT variations.
Abstract:
A low phase jitter oscillator which is adjustable in frequency is disclosed. The oscillator comprises a logical OR gate having a feedback loop adjustable in length between the inverted output of the gate and the input of the gate. Using this configuration, the output changes state once every 1/2 T seconds wherein 1/2 T is equal to the propagation delay through the feedback loop and the OR gate. The frequency of the oscillator can be adjusted by adjusting the length of the feedback loop which correspondingly modifies the propagation delay through the feedback loop and thus the frequency of the oscillator output.
Abstract:
Frequency/temperature compensation of millimeter wave lumped active element oscillators is disclosed by use of a simple capacitive compensating element, and including printed circuit versions in which the temperature compensating capacitor is printed in-situ with the circuit elements.
Abstract:
A digital compensation circuit for improving the temperature stability of dielectric resonator oscillators is disclosed. A temperature sensor indicates a measure of ambient temperature which is correlated with an amount of phase shift necessary to compensate for frequency drift in a dielectric resonator oscillator. The correlation is made using a correction table or correction function which is determined empirically in a calibration process. The necessary phase shift is then supplied via a voltage controlled phase shifter. This phase shifter is part of the RF oscillation loop which also includes an amplifier, directional coupler and dielectric resonator filter (including microstrip).
Abstract:
In an R.F. oscillator arrangement comprising a diode (D), such as a TRAPATT diode, operable to produce pulses of R.F. energy when d.c. pulses (P) above a critical level (I.sub.k) are applied to the diode (D), the frequency of oscillation is markedly dependent on the temperature of the diode (D). To reduce variations of the frequency over a wide operating range of ambient temperatures a direct current (I.sub.a) below the critical level (I.sub.k) is passed through the diode (D) to heat it, the heating current (I.sub.a) being controlled by measuring the temperature of a heat-sink (N) on which the diode (D) is mounted and which is substantially at ambient temperature, or by measuring the oscillating frequency.
Abstract:
An SHF band oscillation circuit using a field effect transistor (FET) having a feedback path between gate and drain or source and a resonator connected to the gate. Impedances connected to the respective terminals of the FET comprise microstrip lines. A gate bias circuit includes a temperature-sensitive semiconductor device so that a gate bias is changed with the change in ambient temperature. In this manner, the change of oscillation frequency which would otherwise occur by the change of the ambient temperature is compensated. The resonator connected to the gate comprises a dielectric resonator to further stabilize the oscillation frequency.
Abstract:
A temperature compensated cavity oscillator comprising a resonant coaxial cavity of which the outer conductor is constructed of dissimilar materials. The end walls and adjacent portion of the outer conductor of the coaxial cavity are made of a first conductive material having a first temperature coefficient of expansion. Interposed between the first conductive material of the outer conductor, the middle portion of the outer conductor is made from a second conductive material having a second temperature coefficient of expansion. A tuning rod is displaced through the middle portion of the cavity and capacitively coupled to a center coaxial conductor to provide mechanical tuning of the oscillation frequency and for varying the frequency of the cavity with temperature such that the temperature characteristics of the oscillating element are compensated to produce a substantially stable oscillating frequency.