Abstract:
A wireless speaker audio system configured to receive audio information wirelessly transmitted by an audio source including first and second wireless transceivers. The first wireless transceiver establishes a bidirectional secondary wireless link with the audio source for receiving and acknowledging receipt of the audio information. The first and second wireless transceivers communicate with each other via a primary wireless link. A wireless audio system including an audio source and first and second wireless transceivers. The first and second wireless transceivers communicate via a primary wireless link. The audio source communicates audio information to the first wireless transceiver via a secondary wireless link which is configured according to a standard wireless protocol. The first wireless transceiver is configured to acknowledge successful reception of audio information via the secondary wireless link. Other embodiments are also described and claimed.
Abstract:
According to some embodiments, a secondary network node detects a first data transmission of media content from a primary network node to a first wireless device. The first data transmission has a first data quality description D(n1) and a first transport format T(k1). The secondary network node selects a second data quality description D(n2′) and a second transport format T(k2′) for a second data transmission. The second data quality description D(n2′) and second transport format T(k2′) differ from the first data quality description D(1) and first transport format T(k1), respectively. The secondary network node transmits the second data transmission to a second wireless device according to the second data quality description D(n2′) and the second transport format T(k2′). The second data transmission includes at least a portion of the media content.
Abstract:
A mobile communication system comprises: a user terminal configured to receive a desired wave signal being a signal from a serving cell to the user terminal and an interference wave signal being a signal to another user terminal; and a base station configured to manage the serving cell. The base station includes a base station-side control unit configured to superpose an interference replica signal corresponding to the interference wave signal on the desired wave signal so as to cancel the interference wave signal received by the user terminal. The base station-side control unit is configured to transmit a predetermined signal corresponding to a first reference signal included in the interference wave signal. The user terminal includes a terminal-side control unit configured to derive first received power under a situation where the interference replica signal is superposed on the desired wave signal on the basis of at least one of the first reference signal and the predetermined signal.
Abstract:
The present disclosure provides a method and apparatus for communicating data packets in a cloud cell. In one embodiment, a network node from which data packets are received is identified by the BS. If the data packets are received from a data gateway, a network node to which the data packets to be sent is identified. If the data packets are to be sent to a slave BS, partial processing is performed on the data packets by the master BS. Furthermore, partially processed data packets are transmitted to the slave BS so that the slave BS performs complete processing on the partially processed data packets and transmits the completely processed data packets to the MS. If the data packets are to be sent to the MS, then complete processing of the data packets is performed by the BS and transmitted to the MS.
Abstract:
A method for communicating data in a network node is disclosed. A data transmission is received from a first network node at a second network node. The first network node is configured to perform decode-and-forward operations and the second network node configured to perform compression operations. A compression index to be used for conveying the data transmission is generated. The generated compression index is encoded using superposition coding. The compression index is sent to at least the first network node.
Abstract:
A digital communication system including a terminal and a plurality of base stations. The terminal includes receiving of a first control channel which is transmitted only from the first base station, the received first control channel is configured to indicate resource assignment for both data transmitted from the first base station and data coordinately transmitted from the second base station, and is configured to indicate new data or retransmission data. The terminal a second control channel including first control information and second control information only to the first base station. The first control information is channel state information, and the second control information is Hybrid Automatic Repeat reQuest (HARQ) acknowledgement information for the received data coordinately transmitted. The second control information is based on a result of the HARQ process of the received data coordinately transmitted, and the second control channel is transmitted only to the first base station.
Abstract:
A method comprising: at a first transceiver, transmitting a plurality of signals to a second transceiver and receiving corresponding receive signals from the second transceiver, wherein each transmitted signal is sent using a channel perturbation; measuring a plurality of phase values, wherein each phase value is a phase difference between one of the plurality of transmitted signals and corresponding receive signal; masking a subsequent phase modulated signal employing phase rotation at the first transceiver using the plurality of phase values.
Abstract:
A method performed in a first radio base station, RBS, in communication with a radio network controller, RNC. The RNC is configured for multi-flow HSDPA, High-Speed Downlink Packet Access, operation and packet data units, PDUs, are communicated toward a user equipment, UE, node via the first RBS and at least one second RBS. The method comprises: detecting PDU drop events and/or loss events; and communicating information from the RBS to the RNC, notifying of each detected PDU drop event and/or loss event. A corresponding RBS and RNC are also presented.
Abstract:
Provided is a transmission method executed by a transmitting apparatus to transmit a content to a plurality of terminals. The content having transmission count information indicating a number of times the content is to be transmitted by the transmitting apparatus. The transmission method including a first transmission step of generating and transmitting a first transmission signal which transfers at least a first portion of a plurality of data packets including a plurality of content packets, storing data of the content therein, and a plurality of parity packets, generated from the content packets, and a second transmission step of, when the transmission count information of the content indicates a plurality of times, generating a second transmission signal including at least a second portion of the plurality of data packets, and transmitting the second transmission signal during a period which differs from a period during which the first transmission signal is transmitted.
Abstract:
A method and a base station are provided. The base station obtains a first path gain of a cellular radio link to a first wireless device, a second path gain of a cellular radio link to a second wireless device and a third path gain of a Device-to-Device radio link between the first wireless device and the second wireless device. When the first, second and third path gains satisfy a threshold condition, the base station instructs the second wireless device to apply network coding on first data transmitted from the first wireless device and to transmit a network coded form of the first data. The base station receives a radio signal with the first data transmitted from the first wireless device and uses the network coded form of the first data transmitted by the second wireless device for decoding the first data.