Abstract:
A electromagnetic-power-absorbing composite, comprising a binder and a plurality of multilayered flakes dispersed in the binder. The multilayered flakes include at least one layer pair comprising one thin film crystalline ferromagnetic metal layer adjacent to one thin film dielectric layer. The multilayered flakes are preferably present in an amount in the range from about 0.1% to about 10% by volume of the composite. The composite is useful for absorbing electromagnetic power having a frequency in the range from 5 to 6000 MHz so as to produce heat.
Abstract:
An assembly is provided for a structure. This assembly includes a composite skin and a thermal anti-icing system. The composite skin extends between an exterior surface and an interior surface. The thermal anti-icing system includes a susceptor and a waveguide. The susceptor and the waveguide are integrated into the composite skin between the exterior surface and the interior surface. The waveguide is configured to direct microwaves to the susceptor for melting and/or preventing ice accumulation on the exterior surface.
Abstract:
An assembly is provided for an aircraft structure. This aircraft structure assembly includes an acoustic panel and a thermal anti-icing system. The acoustic panel includes an exterior surface. The thermal anti-icing system includes a susceptor and a microwave system. The susceptor is configured with the acoustic panel. The microwave system is configured to direct microwaves to the susceptor for melting and/or preventing ice accumulation on the exterior surface.
Abstract:
A fiber pre-oxidization device of the present disclosure basically has a transmitting unit and a microwave processing unit. The microwave processing unit is installed with at least one magnetron and a gas supplying unit, wherein the magnetron is disposed at an oven body of the transmitting unit, and the gas supplying unit is connected to the oven body. By focusing the microwave, an ultra-fast pre-oxidization process is applied on a fiber yarn bunch which continuously passes the oven body, and thus the fiber yarn bunch is processed to form an oxidation fiber yarn bunch. Thus, not only an oxidization time of an oxidation fiber can be reduced, but also the shell-core structure of the oxidation fiber can be reduced. Even, the oxidation fiber has no obvious shell-core. Accordingly, relatively positive and reliable means for increasing the performance of carbon fiber are provided.
Abstract:
Systems and methods are provided for annealing a semiconductor structure. In one embodiment, the method includes providing an energy-converting structure proximate a semiconductor structure, the energy-converting structure comprising a material having a loss tangent larger than that of the semiconductor structure; providing a heat reflecting structure between the semiconductor structure and the energy-converting structure; and providing microwave radiation to the energy-converting structure and the semiconductor structure. The semiconductor structure may include at least one material selected from the group consisting of boron-doped silicon germanium, silicon phosphide, titanium, nickel, silicon nitride, silicon dioxide, silicon carbide, n-type doped silicon, and aluminum capped silicon carbide. The heat reflecting structure may include a material substantially transparent to microwave radiation and having substantial reflectivity with respect to infrared radiation.
Abstract:
A low-oxygen atmosphere apparatus including a chamber which houses an object to be processed, microwave generators, and waveguides through which a microwave generated in the microwave generators is transmitted, and further including, in the chamber and/or the waveguides, oxygen-reducing materials to lower the oxygen concentration of the atmosphere in the chamber, which generates heat by the microwave in order to accelerate a reducing reaction of oxygen, thereby lowering the oxygen concentration of the atmosphere in the chamber.
Abstract:
An improved detachable microwave baking pan, comprising an upper baking pan and a lower baking pan which are disposed separately, wherein the upper baking pan is provided with an upper baking pan cavity, and the lower baking pan is provided with a lower baking pan cavity; lower grips are disposed on the edge of two sides of the lower baking pan, and each lower grip is provided with an elastic fastener in an integrated extension manner; upper grips are disposed on the edges of two sides of the upper baking pan, and each upper grip is provided with a fastening protrusion which is in corresponding fastening fit with the elastic fastener; the elastic fasteners are matched with the fastening protrusions, such that the upper baking pan and the lower baking pan are combined into a whole; and the upper baking pan cavity and the lower baking pan cavity are communicated to jointly constitute a heating cavity suitable for baking food. The upper baking pan and the lower baking pan are always elastically fastened by means of the elastic property of the elastic fasteners 203, and even if the food in the heating cavity is uneven in thickness, it is assured that both sides of the food can be baked, and the food is uniformly heated in the baking process.
Abstract:
Systems and methods are provided for annealing a semiconductor structure. In one embodiment, the method includes providing an energy-converting structure proximate a semiconductor structure, the energy-converting structure comprising a material having a loss tangent larger than that of the semiconductor structure; providing a heat reflecting structure between the semiconductor structure and the energy-converting structure; and providing microwave radiation to the energy-converting structure and the semiconductor structure. The semiconductor structure may include at least one material selected from the group consisting of boron-doped silicon germanium, silicon phosphide, titanium, nickel, silicon nitride, silicon dioxide, silicon carbide, n-type doped silicon, and aluminum capped silicon carbide. The heat reflecting structure may include a material substantially transparent to microwave radiation and having substantial reflectivity with respect to infrared radiation.
Abstract:
An oven may include a cooking chamber configured to receive a food product, a radio frequency (RF) heating system configured to provide RF energy into the cooking chamber; and an energy conversion assembly provided as a cooking surface of the oven. The energy conversion assembly may be configured to convert at least some of the RF energy into thermal energy for heating the food product, while at least some other portion of the RF energy is directly applied to the food product to heat the food product.
Abstract:
This invention is about a method and a device for equalizing warming processes in dielectric loads using electric/electromagnetic fields at frequencies below 900 MHz. Characteristic for the invention is that the load is surrounded by a field equalizing material and that the load and the electric/electromagnetic field is moved relative to each other.