Abstract:
An improved ignition-combustion system for internal combustion engines with preferably a 2-valve engine 17/18 with dual-ignition 14a,14b with squish-flow channels 12a, 12b, and cylindrical high energy density pencil coils with open ends including biasing magnets 42a to 42d, the spark being 300 to 450 ma peak secondary current Is, and the primary current being 20 to 25 amps Ip of 60 to 100 turns Np, or bifiler turns of 120 to 200 turns of wire, with turns ratio Ns/Np of 50 to 70, and coil switches being 600 volt IGBTs; and power convertor with energy storage capacitor storing many times the coil energy of 80 mJ to 160 mJ, of 20 to 60) volts power supply, the engine operating with a single ignition firing of 80 to 16 mJ, except when it is cold started or requires multi-firing for better performance, such as under lean burn or high EGR operation.
Abstract:
A plurality of electrode pairs (P1 to P8) are caused to project from a side wall of a combustion chamber (2) of an engine, and a distance between ignition gaps (G1 to G8) and the side wall of the combustion chamber (2) is varied according to the positions of the plurality of electrode pairs (P1 to P8).
Abstract:
An internal-combustion engine is disclosed in which a pair of inlet valves and a pair of outlet valves are provided within the combustion chamber formed in each of a row of cylinders. A first ignition plug is disposed in the cylinder head within a central area of the combustion chamber in plan view. Second and third ignition plugs are disposed in the cylinder head at opposite peripheral portions of the combustion chamber positioned approximately along the first axis direction in plan view, the second and third ignition plugs are arranged so that the discharge electrode portions of the second and third ignition plugs being inclined inwardly of the combustion chamber in opposite directions and are substantially symmetrical relative with the first ignition plug in plan view. A line intersecting the discharge electrode portions of the second and third ignition plugs forms an oblique angle with the direction of the row of cylinders in plan view.
Abstract:
A system for an engine of a vehicle, comprising of at least one combustion chamber located in the engine, a delivery system configured to deliver a fuel and a substance to the combustion chamber, an ignition system including a spark plug configured to ignite the fuel within the combustion chamber, and a control system configured to vary a number of sparks performed by the spark plug in relation to a combustion event of the combustion chamber responsive to a condition of the ignition system.
Abstract:
An ignition control apparatus for an engine; in particular, an engine having two or more igniter plugs per cylinder energized by a electric power source, comprises a voltage detector for detecting a voltage of the electric power source, and a controller configured to effect initial combustion using both igniter plugs, to determine whether the voltage is lower than a first threshold voltage, and to effect further combustion using one of the igniter plugs when the voltage detected by the voltage detector is determined to be lower than the first threshold voltage.
Abstract:
A multiple spark pattern internal combustion initiation device includes a body defining a prechamber and a plurality of orifices from the prechamber. The device includes at least two electrical circuits which each form a spark gap with an electrical ground inside the prechamber, operable to create a plurality of different spark patterns. The device may be part of an internal combustion engine which includes a housing with a combustion chamber connected to the prechamber, and means for supplying a lean gaseous fuel mixture into the combustion chamber.
Abstract:
This invention constitutes improvements and innovates with novel preferred embodiments the use of a new spark plug casting mold and process—using either wax or recycled plastic resins for more flexibly casting the bulk of this novel spark plug design and its corresponding now unique method of manufacture. A utility invention and design for providing new improved spark plug(s) and engine ignition components configured in a new manner and for/and as an internal combustion engine ignition system(s); that specifically are also unique and novel in both design configuration(s), some operation(s), method(s) of manufacture and product(s) assembly; plus also novel and original in the specific chemistry of some metal alloy formulas; and the componentization(s) of some of this/these new combined spark plug/ignition system configuration(s) with unique and novel piezo-electric components. This/these invention(s) also constitutes improvements and innovates with novel preferred embodiments the use of a new spark plug casting mold and process-using either wax or recycled plastic resins for more flexibly casting the bulk of this novel spark plug design and its corresponding now unique method of manufacture. The objects and advantages of new comprehensive design and unique manufacturing configuration processes will also incorporate and demonstrate an improved satisfactory spark plug and engine ignition system electrode(s) which can be efficiently manufactured and can be accomplished by fuse-weld connection continuity/welding of a wire around the center electrode. Which in a variant of this novel patent design configuration will result in improvements in the electron flow or spark to emanate or to “ramrod” “shoot-out” like a “shooting star or rocket” in comparison to all conventional and all prior spark plug designs, configurations and engine ignition system performance and operation(s). Thus, both an improved spark plug and ignition system performance is/are provided.
Abstract:
A capacitive discharge ignition (CDI) system for generating ignition sparks in an internal combustion engine comprises a single CDI module including a plurality of charge storage capacitor devices, a corresponding plurality of sets of ignition outputs, at least one charging circuit for charging at least one of the plurality of charge storage capacitor devices, and an ignition controller for selectively and individually controlling each of the plurality of charge storage capacitor devices and the at least one power supply circuit. Each of the plurality of charge storage capacitor devices is operatively coupled to the ignition outputs of one of the plurality of sets of ignition outputs. This allows for the single CDI module to power multiple, independent spark plugs either simultaneous of, immediately prior to or after each other while still delivering full energy to each ignition device.
Abstract:
An internal combustion engine includes a cylinder with a spark plug, an electric DC voltage supply, and an ignition circuit. The ignition circuit includes a switching device and a transformer having a primary winding coupled to the supply via the switching device, and a secondary winding coupled to the spark plug. After having generated an initial breakdown of a breakdown path through a gas mixture between electrodes of the spark plug, switching occurs repeatedly per combustion to produce pulses at the primary winding, with a repeat frequency which is at least sufficiently high that the breakdown path remains conductive between consecutive switches per combustion. The switching on and switching off provides heating of the breakdown path to ignite the gas mixture. The transformer has an air core around which the primary and secondary windings are arranged concentrically.
Abstract:
An apparatus for controllably generating sparks is provided. The apparatus includes a spark generating device; at least two output stages connected to the spark generating device; means for charging energy storage devices in the output stages and at least partially isolating each of the energy storage devices from the energy storage devices of the other output stages; and, a logic circuit for selectively triggering the output stages to generate a spark. Each of the output stages preferably includes: (1) an energy storage device to store the energy; (2) a controlled switch for selectively discharging the energy storage device; and (3) a network for transferring the energy discharged by the energy storage device to the spark generating device. In accordance with one aspect of the invention, the logic circuit, which is connected to the controlled switches of the output stages, can be configured to fire the stages at different times, in different orders, and/or in different combinations to provide the spark generating device with output pulses having substantially any desired waveshape and energy level to thereby produce a spark having substantially any desired energy level and plume shape at the spark generating device to suit any application.