Abstract:
When a main switch is turned on, a main relay is energized so as to supply electric power to a computer system; when an engine starting switch is turned on, an engine is started and energization of the main relay is continued; when an engine stopping switch is turned on, the engine is stopped, and the main relay is de-energized so as to stop supply of electric power to the computer system.
Abstract:
An apparatus and a method are provided for a wiring harness configured for a compressed natural gas (CNG) powered vehicle. The wiring harness comprises an assembly of wires to convey electrical signals. The wires may be bound together by straps, cable ties, cable lacing, sleeves, electrical tape, conduit, a weave of extruded string, or a combination thereof. An exterior sleeve comprises a protective over-molding for the wires. The exterior sleeve seals substantially all connections between the wires and connector terminals of the wiring harness. The exterior sleeve may be flame-retardant and configured to withstand extreme weather conditions. A regulator controls expansion of high pressure CNG to a lower pressure gas that may be utilized in the CNG-powered vehicle. An integrated kill switch prevents engine starting during fueling. The integrated kill switch prohibits engine starting when a fill nozzle cap is improperly installed onto a fill receptacle.
Abstract:
An igniter that includes switch element and switch control device for controlling the switch element depending on ignition signal. The switch control device includes a determination stage that compares voltage associated with the ignition signal with a predetermined voltage to generate a determination signal, a driving stage that controls ON/OFF operations of the switch element depending on the determination signal, a timer circuit that asserts a conduction protection signal when state where the determination signal becomes an assert level corresponding to an ON operation of the switch element continues for predetermined time, a time-varying voltage generating circuit that generates time-varying voltage over time in response to the assertion of the conduction protection signal, and an amplifier that changes the voltage of a control terminal of the switch element such that detection voltage associated with coil current flowing in the switch element is close to the time-varying voltage.
Abstract:
An engine is configured such that, during the starting of the engine, when it is being detected that throttle opening has been set at a starting position, if it is detected that the engine speed has exceeded a predetermined speed slightly lower than a speed when a centrifugal clutch becomes an engaged state, a control unit retards the ignition timing from a general angle to a first angle BTDC, and then advances the ignition timing to a second angle at predetermined intervals, and holds the ignition timing at the second angle for a predetermined time period, thereby preventing the engine from stopping due to fouling on the spark plug while suppressing the engine speed at the speed when the centrifugal clutch becomes the engaged state, or less.
Abstract:
Described is a method for detecting a glow plug replacement of an engine, wherein a first value of a temperature-dependent variable is measured at a first glow plug of the engine and, simultaneously, a second value of the temperature-dependent variable is measured at a second glow plug of the engine. The first value of the temperature-dependent variable is compared with a stored reference value of the first glow plug and a glow plug replacement is detected if the difference of the first value from the reference value exceeds a threshold value. According to this disclosure, it is provided that the reference value is a value which, in an earlier measurement, was measured at the first glow plug simultaneously with the measurement of a value at the second glow plug which corresponds to the second value within a predefined tolerance.
Abstract:
An ECU outputs an ignition signal and a discharge waveform control signal. An ignition device closes an ignition switching element in a period during which the ignition signal is input. After a stop of the input of the ignition signal and in a period of input of the discharge waveform control signal, the ignition device controls current flowing through a primary coil to a discharge current command value that is determined by the discharge waveform control signal by opening or closing a control switching element. A discharge control unit determines whether there is an abnormality. When it is determined that there is an abnormality, the ECU avoids control executed by the discharge control unit, and causes the discharge control unit to execute control during times of low-rotation and low-load operation of an internal combustion engine in order to determine whether the discharge control unit has returned to a normal state.
Abstract:
A spark plug for an internal combustion engine includes a center electrode, a tubular insulator, a tubular metal shell, a ground electrode and an overvoltage preventer. The insulator has the center electrode inserted and held therein. The metal shell has the insulator inserted and held therein such that a proximal part of the insulator is exposed from the metal shell. The ground electrode is joined to a distal end of the metal shell and faces the center electrode through a spark gap formed between the center and ground electrodes. The overvoltage preventer prevents a voltage higher than or equal to a threshold voltage from being applied across the spark gap. The overvoltage preventer is arranged in the proximal part of the insulator so as to be positioned outside the metal shell and farther than the metal shell from the spark gap.
Abstract:
In a method for testing a supply circuit for an ignition circuit having at least one energy accumulator, a first conversion circuit that raises a supply voltage to a specified voltage level and charges the at least one energy accumulator, a controllable discharging circuit that discharges the at least one energy accumulator as needed, the energy accumulator is connected via a first coupling diode to the ignition circuit, and the supply voltage is applied via a second coupling diode to the at least one ignition circuit. Following the system start-up, a state of charge of the at least one energy accumulator is ascertained and compared to the at least one specified threshold value, and as a function of the comparison, a faultless supply circuit or at least one fault is recognized.
Abstract:
An engine is configured such that, during the starting of the engine, when it is being detected that throttle opening has been set at a starting position, if it is detected that the engine speed has exceeded a predetermined speed slightly lower than a speed when a centrifugal clutch becomes an engaged state, a control unit retards the ignition timing from a general angle to a first angle BTDC, and then advances the ignition timing to a second angle at predetermined intervals, and holds the ignition timing at the second angle for a predetermined time period, thereby preventing the engine from stopping due to fouling on the spark plug while suppressing the engine speed at the speed when the centrifugal clutch becomes the engaged state, or less.
Abstract:
An engine ignition control device comprising: a start-up ignition controller having a function for preventing the occurrence of kickback by either delaying an ignition position of an engine or stopping ignition; start-up rotation angle detection means for detecting a rotation angle of a crankshaft of the engine after initiation of a start-up operation of the engine; and switching means for switching control specifics of the start-up ignition controller in accordance with the detected start-up rotation angle so that when the detected start-up rotation angle is less than a set angle, there is created a kickback-preventive effect within a range at which engine startability is not compromised, and when the detected start-up rotation angle is equal to or greater than the set angle, there is created a kickback-preventive effect that is greater than the kickback-preventive effect for when the start-up rotation angle is equal to or less than the set angle.