Abstract:
A base station for controlling transmission power during the establishment of a communication channel utilizes the reception of a short code during initial power ramp-up. The short code is a sequence for detection by the base station which has a much shorter period than a conventional access code. The ramp-up starts from a power level that is lower than the required power level for detection by the base station. The power of the short code is quickly increased until the signal is detected by the base station. Once the base station detects the short code, it transmits an indication that the short code has been detected.
Abstract:
A base station for controlling transmission power during the establishment of a communication channel utilizes the reception of a short code during initial power ramp-up. The short code is a sequence for detection by the base station which has a much shorter period than a conventional access code. The ramp-up starts from a power level that is lower than the required power level for detection by the base station. The power of the short code is quickly increased until the signal is detected by the base station. Once the base station detects the short code, it transmits an indication that the short code has been detected.
Abstract:
A system, method and apparatus for demodulating a received signal using a configurable receiver. The receiver performs the demodulation of a signal according to a selected interference cancellation demodulation scheme. The same receiver can be configured, by setting certain parameters, to behave as a successive interference cancellation (SIC) scheme receiver, a parallel interference cancellation (PIC) scheme receiver, or a hybrid interference cancellation (HIC) scheme receiver. In another aspect of the present invention, the receiver performs its demodulation operation using a single interference cancellation unit (ICU). In addition, the ICU's despreading and respreading functions may be performed by the same processing element.
Abstract:
A path detector (100) provides statistics of rates at which preamble signals are detected within a predetermined time period. For a delay amount segment where the detection rate is low, the sampling rate of correlation value calculation is reduced, and the number of correlator sets used for the preamble signal detection is reduced. Correlator sets made available by that reduction are used to detect message signal paths, thereby raising the operating rate of the RAKE receivers of a decoder (200) to improve the throughput of the message signals. Further, the statistics of the rates of preamble signal detections are periodically updated, and when the preamble signal detection rate of the delay amount segment where the sampling rate was reduced becomes higher, the number of the correlator sets used for the preamble signal detection is increased so as to return the sampling rate to its original value.
Abstract:
A single, common correlation filter (CF) core is provided in a wireless system using CDMA. A plurality of channels with different data rates are provided in the wireless system. The channels provided in the wireless system include the access channel, the maintenance channel, and the traffic channel in which information (e.g., pilot or data symbols or both) is transmitted at the tier 1, tier 2 and tier 3 rates. The data rate for transmitting the information is programmable by digital signal processor (DSP). A user-unique code, such as a PN code, is applied to the information being transmitted in the channels of the wireless system. The information is QPSK modulated and transmitted in any one of the channels at any data rate. The transmitted information is correlated at the smallest data rate (i.e., the tier 1 rate) in the correlation filter (CF) of the wireless system by time multiplexing delayed versions of the PN code to the correlation filter core. The correlated information is then demultiplexed and pilot aided QPSK demodulated. The demodulated information is summed at the proper integer multiple of the tier 1 rate to achieve the tier 2 and tier 3 rates. The three strongest multipaths (in terms of the received power) are selected in a window or time period for optimal information recovery. Furthermore, three outputs from the demodulated information can be provided and combined for temporal diversity. Spatial diversity is achieved by providing a plurality of antennas at each receiver and a single, common correlation filter at each of the plurality of antennas of the receivers in the wireless system.
Abstract:
A radio apparatus and base station apparatus that flexibly respond to an increase or decrease in the number of users without being constrained by the number of users. An A-DPCH signal processing section (106) generates dedicated transmission signals corresponding in number to users multiplexed based on the number of users for each sector input from a control station apparatus and outputs the multiplexed signal to a multiplexing section (105). An HSDPA signal processing section (107) selects a transmission destination sector based on an instruction from a base station control section, generates multiplexed transmission data and outputs the multiplexed data to the multiplexing section (105). The multiplexing section (105) code-multiplexes dedicated transmission signals of A-DPCH and packet data in HSDPA communication for each sector and outputs the multiplexed data to a radio transmission section (104). The radio transmission section (104) transmits the multiplexed transmission signal input from the multiplexing section (105) from an antenna (101).
Abstract:
The present invention is related to a flexible distribution architecture and method for rake receiver of communication system, comprising: a plurality of processing units, further, each processing unit comprises: a plurality of rake receivers, wherein each rake receiver can receive a multi-path signal from its environment and, through a recovery process, outputs a recovered signal therefrom; an combiner, which connects with the plurality of rake receivers and receives a plurality of recovered signals, then further integrates the plural recovered signals which are originated from a same source by an integration process and, consequently, outputs an integrated signal therefrom; a master processing unit, which connects with the plural processing units and, through detecting the signal received, assigns an appropriate number of rake receivers to receive signals, and further the plural integrated signals originated from a same source are integrated by an integration process and, consequently, outputs a compound signal therefrom. The aforementioned rake receivers can be subordinated to different processing units. The present invention further provides a flexible distribution method for rake receivers that are subordinate to different processing units.
Abstract:
A User Equipment (UE) has a circuit that performs the acquisition for the low chip rate option of the Universal Mobile Telecommunication System (UMTS) Time Division Duplex (TDD) standard as formulated by the Third Generation Partnership Project (3GPP). The present invention implements the detection of the basic SYNC code; the determination of the midamble used and the detection of the superframe timing based on SYNC code modulation sequence. This enables reading of a full Broadcast Channel (BCH) message.
Abstract:
A Node-B/base station receiver comprises at least one antenna for receiving signals. Each finger of a pool of reconfigurable Rake fingers recovers a multipath component of a user and is assigned a code of the user, a code phase of the multipath component and an antenna of the at least one antenna. An antenna/Rake finger pool interface provides each finger of the Rake pool an output of the antenna assigned to that Rake finger. A combiner combines the recovered multipath components for a user to produce data of the user.
Abstract:
A method for determining a threshold value for controlling output power of a mobile communication terminal in a W-CDMA system, includes: calculating a first value by dividing an average energy per a PN chip of downlink DPCCH by a total received power spectral density of downlink; calculating a second value by dividing the total received power spectral density of downlink by a white noise power spectral density; calculating a chip unit SIR by adding the first and second values; and determining a symbol unit threshold value for controlling ON/OFF of terminal output power by adding the chip unit SIR and a processing gain according to the number of chips per symbol. Accordingly, a symbol unit threshold value for controlling output power can be easily determined irrespective of a value of a data rate and a spreading factor.