Abstract:
There is provided cryogenic milled copper alloys and methods of making the alloys. The alloys are fine grained and possess desirable physical properties stemming from the fine grain size. Embodiments include desirable physical properties, such as potentially high strength. Some embodiments of the cryogenic milled copper alloys may also be tailored for ductility, toughness, fracture resistance, corrosion resistance, fatigue resistance and other physical properties by balancing the alloy composition. In addition, embodiments of the alloys generally do not require extensive or expensive post-cryogenic milling processing.
Abstract:
A titanium based carbonitride alloy containing Ti, Nb, W, C, N and Co. The alloy also contains, in addition to Ti, 9-14 at % Co with only impurity levels of Ni and Fe, 1-
Abstract:
There is provided nanometer-size spherical particles. The particles of the present invention are made of at least one selected from the group consisting of a metal, an alloy, and a metal compound. The particles include one or both of a polycrystalline region and a single-crystalline region. The particles have a particle size of less than 1 μm; and a sphericity of −10% to +10%.
Abstract:
A refractory metal-based alloy material exhibiting high strength and high recrystallization temperature includes a worked material obtained by carburizing, while using a carbon source and coexisted oxygen, a material containing nitride particles of a solute metal dispersed and precipitated in a matrix by multi-step nitriding of a worked alloy material containing one metal selected from Mo, W, and Cr as a matrix and at least one element selected from Ti, Zr, Hf, V, Nb, and Ta as the solute metal, wherein the worked material contains carbon segregated at grain boundaries as a result of the carburizing and oxide particles converted from the nitride particles.
Abstract:
A direct manufacturing technique involving rapid solidification processing uses a reaction between a metallic molten pool and a reactant gas in an inert atmosphere to form alloys with improved desired properties. By utilizing rapid solidification techniques, solubility levels are increased resulting in alloys with unique mechanical and physical properties. Laser deposition of alloys in atmospheres of varying reactant content produce compositions with intermingled and significantly improved overall properties.
Abstract:
The present invention relates to a process for hardening an aluminum-based matrix alloy by the dispersion of metallized graphite (MG) with copper and optionally zinc or boron by the agitation in liquid state. By this means, the impregnating of MG particles (reinforcing phase) is increased, facilitating the homogenous distribution in the aluminum-base matrix alloy. The mechanical properties of aluminum or aluminum-based are increased alloys by the process of hardening by dispersion, without affecting the density and electrical conductivity of the alloy.
Abstract:
A powder metallurgy corrosion and wear resistant tool steel article, and alloy thereof. The article is manufactured by hot isostatic compaction of nitrogen atomized, prealloyed high-chromium, high-vanadium, high-niobium powder particles. The alloy is characterized by very high wear and corrosion resistance, making it particularly useful for use in the manufacture of components for advanced bearing designs as well as machinery parts exposed to severe abrasive wear and corrosion conditions, as encountered, for example, in the plastic injection molding industry and food industry.
Abstract:
A method for producing a breech slide of a firearm in a metal injection molding process. The process includes the following steps: a green body is injected in an injection mold. The green body is cooled. The binder is removed from the green body to form a brown body. Then the brown body is sintered.
Abstract:
A manufacturing method of a clubface of a golf club reduces the amount of the metallic material used and enhances production. The manufacturing method includes the following steps: a metal powder and a binder are mixed to form a mixture; the mixture is shaped by a clubface mold to form a primary clubface; the primary clubface is then heated to a sintering temperature of the metal powder to form a clubface, before the clubface is finally compacted to make it stronger and increase the clubface's density.
Abstract:
A powder metallurgy corrosion and wear resistant tool steel article, and alloy thereof. The article is manufactured by hot isostatic compaction of nitrogen atomized, prealloyed high-chromium, high-vanadium, high-niobium powder particles. The alloy is characterized by very high wear and corrosion resistance, making it particularly useful for use in the manufacture of components for advanced bearing designs as well as machinery parts exposed to severe abrasive wear and corrosion conditions, as encountered, for example, in the plastic injection molding industry and food industry.