摘要:
An electronic device includes a semiconductor substrate, an insulating material-filled layer and a vertical conductor. The semiconductor substrate has a vertical hole extending in a thickness direction thereof. The insulating material-filled layer is a ring-shaped layer filled in the vertical hole for covering an inner periphery thereof and includes an organic insulating material or an inorganic insulating material mainly of a glass and a nanocomposite ceramic. The nanocomposite ceramic has a specific resistance of greater than 1014 Ω·cm at room temperature and a relative permittivity of 4 to 9. The vertical conductor is a solidified metal body filled in an area surrounded by the insulating material-filled layer.
摘要:
The present invention provides nanometer-size spherical particles. Each of the particles is made of at least one selected from the group consisting of a metal, an alloy, and a metal compound. The particles include one or both of a polycrystalline region and a single-crystalline region. The particles have a particle size of less than 1 μm; and a sphericity of −10% to +10%.
摘要:
An electronic device includes a plurality of stacked substrates. Each of the substrates includes a semiconductor substrate, a columnar conductor, and a ring-shaped insulator. The columnar conductor extends along a thickness direction of the semiconductor substrate. The ring-shaped insulator includes an inorganic insulating layer mainly composed of a glass. The inorganic insulating layer fills a ring-shaped groove that is provided in the semiconductor substrate to surround the columnar conductor.
摘要:
A filling material includes a support base member and a metal layer, the metal layer including a first metal layer and a second metal layer and being disposed on one side of the support base member, the first metal layer being an aggregate of nano metal particles and having a film thickness enabling melting at a temperature lower than a melting point, the second metal layer being an aggregate of metal particles having a lower melting point than the first metal layer.
摘要:
An electronic device includes a semiconductor substrate, an insulating material-filled layer and a vertical conductor. The semiconductor substrate has a vertical hole extending in a thickness direction thereof. The insulating material-filled layer is a ring-shaped layer filled in the vertical hole for covering an inner periphery thereof and includes an organic insulating material or an inorganic insulating material mainly of a glass and a nanocomposite ceramic. The nanocomposite ceramic has a specific resistance of greater than 1014 Ω·cm at room temperature and a relative permittivity of 4 to 9. The vertical conductor is a solidified metal body filled in an area surrounded by the insulating material-filled layer.
摘要:
A method for manufacturing an electronic device, including a step of aligning and stacking a plurality of substrates, each of the plurality of substrates having a plurality of vertical conductors and magnetic films, the vertical conductors being directed along a thickness direction of the substrate and distributed in a row with respect to a substrate surface, the magnetic films being disposed in place on the substrate surface in a predetermined positional relationship with the vertical conductors, upon aligning the plurality of substrates, the electronic device manufacturing method including a step of applying an external magnetic field to produce a magnetic attractive force between the magnetic films of adjacent stacked substrates and align the vertical conductors by the magnetic attractive force.
摘要:
There is provided a lubricant composition which includes: a first particle having a spherical shape having a diameter of 1 to 300 nm, having a Mohs hardness of 5 or more, at an amount of 0.01 to 40 weight %; and a second particle, having a diameter of 500 nm to 50 μm, having a Brinell hardness of 17 HB or less, at an amount of 0.01 to 40 weight %. The lubricant composition can form a bearing structure when the lubricant composition is subjected to an extreme pressure. The second particles are deformed into a retainer for the first particle.
摘要:
The method for preparation of sintered permanent magnets according to the present invention comprises the steps of: mixing fully fine powder of a crystalline mother alloy for permanent magnet containing a rare-earth element, Fe and B as the essential components with fine powder of zinc oxide, compaction molding the resulted mixture in the presence of a magnetic field, sintering the compacted mixture in vacuum to cause generation of oxygen and metallic zinc by thermal decomposition of the zinc oxide; segregation of a part of metallic component in the mother alloy at the boundary and inside of the mother alloy crystal; formation of amorphous metallic oxide by forced oxidation of the segregated metal with the generated oxygen; crystallization of the amorphous metallic oxide; formation of an epitaxial junction between the crystallized metallic oxide and the mother alloy crystal; and evaporation of the metallic zinc into the vacuum, and quenching the sintered compact.
摘要:
The present invention is directed to provide a method of preparing a raw material powder for permanent magnets superior in moldability, especially in moldability and productivity of bonded magnets. The method comprises subjecting an acicular iron powder having an aspect ratio of not smaller than 5:1 to heating at 800-900.degree. C. in fluidized state with a gas stream containing no oxygen until the acicular iron powder is transformed into a columnar shape iron powder having an aspect ratio of not larger than 3:1, a die-like shape iron powder or a spherical shape iron powder. The acicular iron powder may contain or may be attached by such a component effective for improving magnetic properties as a rare earth element metal, a rare earth element metal oxide, boron, cobalt and nickel.
摘要:
A method includes applying, between connection conductors of adjacent substrates, a junction material containing the first metal or alloy component and the second metal or alloy component having a higher melting point than said first metal or alloy component. The method further includes melting the junction material by a heat treatment.