Abstract:
A locking strut including a housing with a piston rod extending therethrough. A baffle mounts on the piston rod to divide the housing into two chambers. An orifice through the baffle allows fluid to pass between the chambers to damp reciprocating movement. An electromagnetic driver within the housing is selectively energized to move a ferromagnetic plate between an open position, wherein fluid flows freely between the chambers, and a closed position, wherein the ferromagnetic plate blocks the orifice to prevent fluid flow between the chambers and lock the locking strut in position. A plurality of orifices may be spaced about the baffle, with the number and size of the orifices determining the damping capability of the locking strut. A plurality of drivers may be disposed within the housing to overcome fluid forces during movement of the locking strut between an extended and a retracted position.
Abstract:
A mine door assembly has a frame. At least one door leaf is mounted on the frame for swinging movement between open and closed positions. Movement of the door leaf is powered by a pneumatic actuator. The door installation also has a hydraulic checking system for controlling the speed of the door leaf as it moves back and forth between open and closed positions. A pneumatically-powered control system may be provided to control the door installation. The pneumatic control system may comprise a calibrated vent to shorten the delay in the response of the door leaf to direction from the control system to stop moving. The pneumatic control system may also comprise a limit valve to prevent the door installation from opening when a second door installation is open, thereby preventing both door installations in an air lock from being open at the same time.
Abstract:
A damping device for movable furniture parts, such as doors or drawers, includes a cylinder filled with a free-flowing medium which is compressed by a piston which has a spring applied to it in its extended position. In order to provide a damping device of this type of smaller length, the cylinder includes a telescopic cylinder having at least two stages. A pressure spring is clamped between the bottom of the outer cylinder of the last stage and the piston of the first stage.
Abstract:
A monitor adjusting apparatus include a monitor (10), a base (20) and an adjusting device (30). The adjusting device includes a first pivot assembly (40) connected with the monitor, a second pivot assembly (50) connected with the base, and a connecting assembly (70) mounted between the first pivot assembly and the second pivot assembly. The first pivot assembly generates a friction moment. The monitor generates a first gravity moment opposite to the friction moment. The second pivot assembly generates a twist moment. The monitor and the connecting assembly generate a second gravity moment opposite to the twist moment. The monitor stays at any obliquity under a balance of the friction moment and the first gravity moment, and stays at any height under a balance of the twist moment and the second gravity moment.
Abstract:
A rotary damper device includes a case in which a viscous fluid is filled and sealed, a rotation shaft relatively rotatably supported by the case, a rotation vane formed protruded from the rotation shaft, and a check valve mounted on a tip part of the rotation vane. A passage where the viscous fluid passes through is formed in the rotation vane. The check valve is provided with an opposing face part facing the passage and a frame body interposing the rotation vane. An elastic member for energizing the opposing face part of the check valve for closing the passage of the rotation vane is formed in either the rotation vane or the opposite side of the frame body of the opposing face part.
Abstract:
A cabinet door buffer bar includes a hollow tube, a shaft, an elastic element and a sliding member. The sliding member and the inner wall of the hollow tube form different intervals there between so that a resilient member mounted thereon receives varying constraints and generates different buffer forces in different moving directions thereby provides the cabinet door a required buffer force to avoid generating annoying noise and incurring damages during closing of the cabinet door.
Abstract:
The invention concerns a damping device for damping the kinetic energy of movable cabinet components, which has a first damping element with a first cylinder that has a first piston, which slides lengthwise in it, and at least one more (second) damping element with a second cylinder that has a second piston, which slides lengthwise in it. Both damping elements are located one behind the other in a serial arrangement and form an integral system. The invention is characterized by the fact that each of the two damping elements are each designed as pneumatic (air) dampers, and a compression chamber and an expansion chamber respectively contain variable volumes; whereby, the damping effects of the damping elements are affected by the guide canals, which control the air distribution and air flow within and between the compression chambers and/or expansion chambers.
Abstract:
A locking strut including a housing with a piston rod extending therethrough. A baffle mounts on the piston rod to divide the housing into two chambers. An orifice through the baffle allows fluid to pass between the chambers to damp reciprocating movement. An electromagnetic driver within the housing is selectively energized to move a ferromagnetic plate between an open position, wherein fluid flows freely between the chambers, and a closed position, wherein the ferromagnetic plate blocks the orifice to prevent fluid flow between the chambers and lock the locking strut in position. A plurality of orifices may be spaced about the baffle, with the number and size of the orifices determining the damping capability of the locking strut. A plurality of drivers may be disposed within the housing to overcome fluid forces during movement of the locking strut between an extended and a retracted position.
Abstract:
A rotary damper has a casing having a fluid chamber filled with a fluid, a rotatable member disposed in the fluid chamber for rotation relative to the casing, a vane disposed on an outer circumferential surface of the rotatable member and extending in an axial direction thereof, the vane projecting toward an inner circumferential surface of the fluid chamber and having a first side and a second side opposite to the first side, a fluid passage for allowing the fluid to flow between the first side and the second side at or near a tip end of the vane, and a valve body mounted on the vane for selectively opening and closing the fluid passage. The valve body comprises a valve disposed in a position for closing the fluid passage and a spring for normally urging the valve in a direction to close the fluid passage. The valve and the spring are integrally formed. When the rotatable member rotates in a first direction, the valve opens the fluid passage against the urge of the spring under the pressure of the fluid on the first side of the vane. When the rotatable member stops against rotation, the valve instantaneously closes the fluid passage under the urge of the spring. When the rotatable member rotates in a second direction, the valve keeps closing the fluid passage under the urge of the spring and the pressure of the fluid on the second side of the vane.
Abstract:
A brake system for garage doors including a piston assembly movable within a longitudinal housing assembly and including a central through opening and a threaded bushing rigidly mounted to the piston assembly. A threaded axle is cooperatively received by the threaded bushing so that the rotation of the axle causes the piston assembly to move at a predetermined speed longitudinally within the housing assembly. Longitudinal connecting apertures permit the flow of fluid adjacent to the ends of the piston assembly to flow through. A flapper valve assembly is mounted to one of the ends of the piston assembly by a separating spring member. When the movement of the piston assembly exceeds a predetermined magnitude, the spring member is compressed eliminating the clearance and closing the connecting apertures. This prevents any additional flow and rotational movement of the threaded axle, which in turn is mechanically connected to the counterbalance axle of an opening and closing mechanism for garage doors.