Abstract:
A locking mechanism (100) for use with a pneumatic cylinder/differential engine for a power-operated door including a locking rod (20), a plunger (24) associated with the locking rod (20) to cause extension and retraction of the locking rod (20) with respect to a door opening/closing gear (46), and a spring member (34) associated with the plunger (24) for maintaining the plunger (24) and the locking rod (20) in an extended position during a door closed position. An aperture (46a) is located through a sidewall portion of the gear hub (46b) which is capable of receiving an end (20a) of the locking rod (20) when the locking rod is in an extended position to lock the door in a door closed position. The invention also includes an emergency door opening mechanism enabling manual opening of the doors in case of an emergency.
Abstract:
An automatic opening/closing apparatus for vehicle including a detected subject and a detection sensor for detecting rotation of an output shaft is downsized. A worm gear mechanism decelerating a rotation speed of an electric motor to output it from the output shaft is accommodated in a gear case, and a drum is fixed to a tip portion of the output shaft projecting from the gear case to the outside, whereby motive power of the output shaft is transmitted from this drum to a sliding door. A concave portion centering at an axial center and recessed in an axial direction is formed in a worm wheel constituting the worm gear mechanism, a magnet unit constituting a rotation sensor is disposed inside the concave portion of the worm wheel, and a magnetic sensor for detecting rotation of the magnet unit is fixed to an inner surface of the gear case.
Abstract:
A window regulator assembly is described that comprises a window bracket that is in contact with the bottom edge of the window; a cable; a carrier plate that is in contact with the window bracket and both ends of the cable; a tension spring located on each end of the cable; an upper bracket assembly; a drum housing having a cable drum; a hollow conduit located between the upper bracket assembly and the drum housing; and a drive unit. The upper bracket assembly, cable drum, and conduit are capable of slideably receiving the cable, while the tension springs provide a predetermined amount of tension to the cable in order for the window regulator assembly to move the window between open and closed positions. Many of the components of the window regulator assembly may be formed from a thermoplastic material.
Abstract:
A multi-position tailgate retaining and counterbalancing apparatus and method is disclosed. The apparatus maintains the look and functionality of a conventional tailgate for a pickup truck. The apparatus and methods may include a counterbalance reducing the effort required to lift or lower the tailgate. The apparatus and methods may allow the counterbalanced tailgate to be lowered to, and automatically stop at the standard open position like a conventional tailgate. Moreover, by pulling and releasing the tailgate release latch handle, the tailgate may be lowered further to a fully open position. Upon reaching this lower, fully open position, the tailgate may automatically stop. The apparatus and methods may also provide a counterbalanced tailgate that secures at multiple predetermined positions between the closed and fully open positions, each such position retaining the tailgate's full load carrying capacity.
Abstract:
In an embodiment an adjustable window regulator lifter plate assembly is provided. The adjustable window regulator lifter plate assembly includes a base, a window holder and a cross-car orientation adjustment mechanism. The base is configured for movement along a path. The base has an inboard side and an outboard side. The window holder is configured to receive and hold a vehicle window. The window holder is movably connected to the base. The cross-car orientation adjustment mechanism is operable by a cross-car orientation adjustment tool and is operatively connected to the window holder to control the cross-car orientation of the window holder. The cross-car orientation adjustment mechanism includes a cross-car orientation adjustment mechanism tool-receiving member configured to receive the cross-car orientation adjustment tool. The cross-car orientation adjustment mechanism tool-receiving member is accessible from the inboard side of the base.
Abstract:
A cable guide which has a simple structure and can be easily assembled is adapted to change the direction of the inner cable which slide and drive the slide door of a vehicle, and includes a pulley case 11 whose upper surface is opened, a pulley 12 housed in the pulley case and pivoted rotatably, and a case cover 13 to cover the upper surface of the pulley case. The pulley case has a fixing portion 15 of the outer casing which slidably houses an inner cable. The fixing portion has grooves of roughly U-shaped cross section. The inner perimeter of the groove has a case protrusion 15a. A cover protrusion 13e is formed in the case cover so as to face the case protrusion.
Abstract:
A cable winding drum includes tracks for the winding of a plurality of cable runs, each of the tracks having a winding diameter whose diameter varies. A window regulator and a bodywork element are also included. A window driven by the window regulator having the drum moves at different speeds depending on the winding configuration of the cable around the drum.
Abstract:
An automatic opening/closing apparatus for vehicle is downsized, and cost of the automatic opening/closing apparatus is reduced by reducing the number of its components. A driving drum is rotatably accommodated in a main body case of a driving unit, and one ends of cables are connected to a sliding door and the other ends are wound around the driving drum. An electric motor is attached to the main body case, and the driving drum is driven for rotation. A tensioner mechanism applying a predetermined tension to the cables is accommodated in the main body case. A control device, including a control substrate and a substrate case for accommodating the control substrate, is disposed to be overlapped on an axial-directional side of the driving drum to a portion of the main body case for accommodating the tensioner mechanism, whereby an operation of the electric motor is controlled by the control device.
Abstract:
A window regulator assembly is described that comprises a window bracket that is in contact with the bottom edge of the window; a cable; a carrier plate that is in contact with the window bracket and both ends of the cable; a tension spring located on each end of the cable; an upper bracket assembly; a drum housing having a cable drum; a hollow conduit located between the upper bracket assembly and the drum housing; and a drive unit. The upper bracket assembly, cable drum, and conduit are capable of slideably receiving the cable, while the tension springs provide a predetermined amount of tension to the cable in order for the window regulator assembly to move the window between open and closed positions. Many of the components of the window regulator assembly may be formed from a thermoplastic material.
Abstract:
A sliding door drive assembly for a motor vehicle having a sliding door includes a transmission operatively connected to a motor for transmitting a rotating force to an output shaft. A cable drum is fixedly secured to the output shaft and rotates therewith. First and second cables are wound about the cable drum in opposite directions. The first cable extends from the cable drum forward along the sliding door. The second cable extends from the cable drum rearward along the sliding door. Support guides extend tangentially out from the cable drum to guide the first and second cables outwardly and away from the cable drum along a path minimizing frictional forces. Front and rear pulley assemblies are mounted to the motor vehicle and are operatively coupled to the first and second cables between the sliding door drive assembly and the sliding door for tensioning the first and second cables.