Abstract:
A method of making a planographic printing plate includes exposing, to infrared light, a planographic printing plate precursor including a recording layer provided on a substrate, and developing the precursor using an aqueous alkaline solution. The recording layer comprises a copolymer containing a structural unit derived from (meth)acrylonitrile and at structural unit derived from styrene, a water-insoluble and alkali-soluble resin, and an infrared absorbing agent, the solubility of the recording layer in the aqueous alkaline solution being increased by the exposure. The aqueous alkaline solution has a pH of 8.5 to 10.8 and contains a betaine-based amphoteric surfactant and an ammonium salt represented by Formula (I): R1, R2, R3, and R4 each independently represent an alkyl or aryl group; the total number of carbon atoms in R1, R2, R3, and R4 is not more than 20; and X− represents a counter anion.
Abstract:
A negative-working lithographic printing plate precursor includes a coating containing a photopolymerizable layer and optionally an intermediate layer between the photopolymerizable layer and the support, wherein the coating further includes a polysiloxane, the polysiloxane being present in the photopolymerizable layer and/or in the optional intermediate layer, and the polysiloxane is obtained by reacting at least one organosilicon compound represented by the general Formula (I) and at least one organosilicon compound represented by the general Formula (II):
Abstract:
A laminated lithographic printing plate comprising an aluminum layer having a first side and a second side, an aluminum oxide layer coating the first side aluminum layer, optionally a second aluminum oxide layer coating the second side of the aluminum layer, an image forming layer coating the first aluminum oxide layer, an adhesive layer adhering to the second side of the aluminum layer or to said second aluminum oxide layer when second aluminum oxide layer is present, and a base layer coating the adhesive layer is provided.
Abstract:
A lithographic printing plate precursor in a positive-type with an infrared-sensitivity, having a support and an image recording layer provided on the support, the support having a hydrophilic surface, the recording layer having a particular resin, an amphoteric surfactant and/or an anionic surfactant, and an infrared absorbing agent, wherein the particular resin being at least one of resins selected from the group consisting of a polyurethane resin, a poly(vinyl acetal) resin, and maleimide resin A.
Abstract:
An aluminum sheet material for lithographic printing plates wherein the number of aluminum carbide particles having a circle equivalent diameter, measured by the PoDFA method, of 3 μm or more is four or less, the number of aluminum carbide particles having a circle equivalent diameter, measured by the PoDFA method, of 3 μm or more.
Abstract:
A positive-working lithographic printing plate precursor is disclosed which comprises on a support having a hydrophilic surface or which is provided with a hydrophilic layer a heat and/or light-sensitive coating including an infrared absorbing agent and a compound including a benzoxazine group.
Abstract:
A method for producing a planographic printing plate, including the steps of: image-wise exposing a positive type planographic printing plate precursor including an intermediate layer and a positive type image-forming layer successively on a support, the intermediate layer having a coating amount after drying of from 2 mg/m2 to 200 mg/m2 and including a polymer including a repeating unit represented by the following formula (I-1) and a repeating unit represented by the following formula (I-2); and developing the exposed positive type planographic printing plate precursor using a treatment liquid having a pH of from 7 to 12:
Abstract translation:一种平版印刷版的制造方法,包括以下步骤:在载体上依次将包含中间层和正型图像形成层的正型平版印刷版原版成像曝光,所述中间层的涂布量为 包含由下述式(I-1)表示的重复单元和下述式(I-2)表示的重复单元构成的聚合物的干燥量为2mg / m 2〜200mg / m 2。 并使用pH为7〜12的处理液显影曝光的正型平版印刷版原版;
Abstract:
a method for preparing a lithographic printing plate that includes imagewise exposing a lithographic printing plate precursor comprising a coating provided on a support having a hydrophilic surface, the coating containing thermoplastic polymer particles and an infrared radiation absorbing dye characterized in that the coating further comprises a phenolic stabilizer.
Abstract:
Electrochemically grained and anodized aluminum supports are treated with a post-treatment coating solution containing a polymer derived at least in part from vinyl phosphonic acid and phosphoric acid. This post-treated support is useful as substrates in the preparation of lithographic printing plate precursors. The post-treatment substrate treatment enables wide latitude in manufacturing and compatibility with silicate-free developers to achieve negligible background staining and oxide attack.
Abstract:
A positive-working lithographic printing plate precursor which comprises on a support having a hydrophilic surface or which is provided with a hydrophilic layer, a heat and/or light-sensitive coating comprising an infrared absorbing agent and a binder including a monomeric unit including a salicyclic acid group and a monomeric unit including a sulfonamide group.