Abstract:
A method of fabricating an article includes providing an arrangement of loose nanowires and bonding the loose nanowires together into a unitary cellular structure.
Abstract:
A method of producing full density binder-jet printed metallic articles. A metallic 3-D printed article is produced using a binder-jet printing method and is positioned in a hot isostatic press (HIP) container surrounded by stabilization powder. A vacuum is introduced into the inside of the HIP container. A binder used to bond powder articles together in the printed article is removed by heating the HIP container to decompose the binder and removing decomposition products by applying a vacuum to the HIP container. The HIP container is sealed with a vacuum therein and compacted under heat and pressure to remove all porosity in the printed article. The printed article thereafter is removed from the HIP container and finished to a final form.
Abstract:
A method of producing inorganic compound particles is provided. It includes a step of impregnating a melt liquid of second raw particles into first raw particles by heating a raw material including them at a temperature, which equals to or higher than an eutectic temperature between a region-II (solid-liquid phase range) and a region-I (solid phase range) in a phase diagram and lower than the melting temperature of the inorganic compound. The first raw particles contain an element with a melting point equals to or higher than a melting point of the inorganic compound. The second raw particles contain an element with a melting point lower than the inciting point of the inorganic compound. The method also includes a step of synthesizing inorganic compound particles by a synthetic reaction in the first raw particles between the elements contained in the first and second raw particles.
Abstract:
The present invention provides a method for producing nanometer-size spherical particles. The method includes a first step for producing intermediate spherical particles. The intermediate spherical particles include a polycrystalline or single-crystalline region, having a particle size of 1 to 300 μm. The method of the present invention further includes a second step for producing final spherical particles. The second step uses a swirling plasma gas flow having the central axis thereof, the central axis running through an area between an anode and a cathode of a plasma generator. The intermediate spherical particles are discharged along the axis to subject the intermediate spherical particles to a plasma atmosphere of the area to form the final spherical particles.
Abstract:
A process for manufacturing metal containing powder, the process including the steps of: (a) mixing at least one metal oxide powder with Ca or Mg granules and/or calcium hydride in granule or powder form to form a mixture; (b) maintaining said mixture under an H2 atmosphere, at a temperature between 1000° C. and 1500° C. for 1-10 hours, followed by: (c) recovering metal containing powder. Metal hydride powder may be recovered. The process may further include between steps (b) and (c): (d) switching the H2 atmosphere to an Ar atmosphere and maintaining the mixture thereunder for a period of 20 minutes to 5 hours, followed by: (e) cooling under Ar atmosphere, wherein metal powder is recovered in step (c).
Abstract:
Provided are a powder for a magnet, which provides a rare-earth magnet having excellent magnet properties and which has excellent formability, a method for producing the powder for a magnet, a powder compact, a rare-earth-iron-based alloy material, and a rare-earth-iron-nitrogen-based alloy material which are used as materials for the magnet, and methods for producing the powder compact and these alloy materials.
Abstract:
A circuit breaker having a monolithic structure and method of making is disclosed. The monolithic structure includes an arm portion having copper and a contact portion having a composite material. The composite material has a metallic matrix and a second phase disposed in the metallic matrix. The method of making the monolithic structure includes introducing a first powder into a first region of a mold, introducing a second powder into a second region of the mold, and consolidating the first powder and the second powder together. The first region of the mold corresponds to a contact portion, and the second region corresponds to an arm portion of the monolithic structure of the circuit breaker.
Abstract:
A process including: (a) forming a powder blend by mixing titanium powders, (b) consolidating the powder blend by compacting to provide a green compact, (c) heating the green compact thereby releasing absorbed water from the titanium powder, (d) forming β-phase titanium and releasing atomic hydrogen from the hydrogenated titanium by heating the green compact in an atmosphere of hydrogen emitted by the hydrogenated titanium, (e) reducing surface oxides on particles of the titanium powder with atomic hydrogen released by heating of the green compact, (f) diffusion-controlled chemical homogenizing of the green compact and densification of the green compact by heating followed by holding resulting in complete or partial dehydrogenation to form a cleaned and refined compact, (g) heating the cleaned and refined green compact in vacuum thereby sintering titanium to form a sintered dense compact, and (h) cooling the sintered dense compact to form a sintered near-net shaped article.
Abstract:
Provided is a heat-resistant alloy that satisfies physical properties such as proof stress and hardness adapted to an increase in the melting point of a welding object compared to conventional alloys.A heat-resistant alloy of this invention includes a first phase, as a main component, containing a Mo or W metal phase, a second phase containing a Mo—Si—B-based alloy, and a third phase containing titanium carbonitride, wherein the balance is inevitable compounds and inevitable impurities.
Abstract:
An improved method of reducing a mixed metal oxide composition comprising oxides of nickel, cobalt, copper and iron in a hydrogen atmosphere to produce a mixture of the respective metals, the improvement wherein the atmosphere further comprises water vapor at a concentration, temperature and time to effect selective reduction of the oxides of nickel cobalt and copper relative to the iron oxide to produce the metallic mixture having a reduced ratio of metallic iron relative to metallic nickel, cobalt and copper.