Abstract:
The present patent application provides an interference cavity for precisely controlling an optical path including a cavity formed by two equal distance arms, wherein a positive adjusting plate and a negative adjusting plate are disposed in the interference cavity for compensating the change of a cavity length with temperature and thereby ensuring that the interference cavity length is a constant. The present patent application utilizes the matching relationship between the change of the refractive index of the positive adjustment plate with the temperature and the change of the refractive index of the negative adjusting plates with the temperature to make the optical path difference OPL invariant with changes in the environment temperature and thereby to ensure the precision of the optical path.
Abstract:
A micro-lamellar grating interferometer for deriving the spectrum of an incident beam from a scene of interest from a generated interferogram is disclosed with a method for using the same.The interferometer comprises a lamellar grating defined by two interleaved reflective mirror set; a first stationary set of electromagnetically reflective elements and a second moveable set of electromagnetically reflective elements. The first and second set of electromagnetically reflective elements are referred to as mirror elements herein.The second mirror element set is disposed on a moveable platform supported by flexures that are driven with a high stiffness magnetic, thermal or piezoelectric actuator designed have a predetermined vertical displacement that is perpendicular to the first mirror set.
Abstract:
The invention pertains to a static interferometry system comprising two mirrors produced respectively by vertical assemblage (EH) and horizontal assemblage (EV) of a set of parallel plates of constant width, shifted along the optical axis so as to form stairs of variable optical path difference, the said two staircase mirrors (EH, EV) being disposed orthogonally so as to form, by optical superposition, a set of square facets engendering different optical path differences for the incident signal, and a detection device (DET) for detecting the set of optical path differences of the resulting interferogram. The system comprises, furthermore, means of continuous variation (LC) of the optical path difference during the acquisition of data by the detection device (DET), and sampling means (S, ACQL) for sampling the continuous optical path difference acquired while complying with the Nyquist criterion.
Abstract:
An object of the present invention is to provide a spectroscopic method and an apparatus which can measure a trace element accurately with high sensitivity. In order to achieve this object, for example, in Fourier transformation infrared spectroscopy (FT-IR), a reference spectrum and a measurement spectrum including an impurity spectrum are measured in order to obtain a differential spectrum comprising the impurity spectrum and a flat baseline, correction including a frequency shift of the reference spectrum before calculating a differential spectrum, is performed on the reference spectrum. This makes it possible to remove baseline deformation due to phonon absorbance of silicon included in the conventional differential spectrum, and to obtain an infrared absorption spectrum of the substitutional carbon with high accuracy and high sensitivity.
Abstract:
A method includes extracting phase due to fringe count error (FCE) in spectra formed by an interferometer. The exemplary method includes the steps of: (a) forming an earth scene spectrum; (b) forming a background reference spectrum; and (c) forming a phase extraction function, Rk, where k is a kth channel of the interferometer. The phase extraction function is formed from the earth scene spectrum and background reference spectrum. The method may also include the steps of (d) using recursive least squares (RLS) to extract phase from the Rk function; and (e) providing the extracted phase to a user to correct the FCE. Step (c) may include forming a term in the Rk function that includes a positive or a negative sign of a square root. Step (d) may include determining whether the sign is negative or positive using the RLS.
Abstract:
An irreversible-reaction measurement method comprising: a step in which a perturbation is applied to one of the divided portions of a measurement sample placed in a light path of a Fourier-transform spectrophotometer to cause an irreversible-reaction while a mirror of the spectrophotometer remains at a data point; a step in which interferogram is detected from the sample portion placed in the path at predetermined time intervals after the application of the perturbation; a step in which the mirror moves to and remains at the next data point after the reaction of the sample portion reaches an end point; a step in which the sample portion placed in the light path is changed to the next sample portion each time the mirror moves to the next data point; and a step in which the irreversible-reaction of the measurement sample is analyzed in accordance with the interferogram obtained by repeating the steps.
Abstract:
A bandwidth meter method and apparatus for measuring the bandwidth of a spectrum of light emitted from a laser input to the bandwidth meter is disclosed, which may comprise an optical bandwidth monitor providing a first output representative of a first parameter which is indicative of the bandwidth of the light emitted from the laser and a second output representative of a second parameter which is indicative of the bandwidth of the light emitted from the laser; and, an actual bandwidth calculation apparatus utilizing the first output and the second output as part of a multivariable equation employing predetermined calibration variables specific to the optical bandwidth monitor, to calculate an actual bandwidth parameter. The actual bandwidth parameter may comprise a spectrum full width at some percent of the maximum within the full width of the spectrum of light emitted from the laser or a width between two points on the spectrum enclosing some percentage of the energy of the full spectrum of the spectrum of light emitted from the laser. The apparatus and method may be implemented in a laser lithography light source and/or in an integrated circuit lithography tool.
Abstract:
A method for determining a background noise level includes receiving interferogram data; determining at least one measure of interferogram quality; accumulating said received interferogram data; and generating a background noise level based on said interferogram data and at least one measure of interferogram quality.
Abstract:
An object of the present invention is to provide a spectroscopic method and an apparatus which can measure a trace element accurately with high sensitivity. In order to achieve this object, for example, in Fourier transformation infrared spectroscopy (FT-IR), a reference spectrum and a measurement spectrum including an impurity spectrum are measured in order to obtain a differential spectrum comprising the impurity spectrum and a flat baseline, correction including a frequency shift of the reference spectrum before calculating a differential spectrum, is performed on the reference spectrum. This makes it possible to remove baseline deformation due to phonon absorbance of silicon included in the conventional differential spectrum, and to obtain an infrared absorption spectrum of the substitutional carbon with high accuracy and high sensitivity.
Abstract:
Disclosed is a Fourier transform infrared spectrophotometer, which comprises: a main interferometer section including a beam splitter, a fixed mirror, a movable mirror, and a phase plate disposed between the beam splitter and the fixed mirror; a control interferometer section having a quadrature control system for calculating a position of the movable mirror; a center-burst-position detection section operable, based on an input of interference signals and interferograms, to subject respective intensities of the interferograms to an addition processing while correcting a positional deviation of the movable mirror, so as to obtain a cumulative interferogram, and detecting a center burst position having a maximum intensity value in the cumulative interferogram; a center-burst-position storage section operable to store the detected center burst position; and a measurement-start-position determination section operable, based on the stored center burst position, to determine a measurement start position of the movable mirror during the measurement operation.