Abstract:
Compounds comprising phosphorus-containing metal complexes can be used in electroluminescent devices and have an emission maximum closer to the blue region of the visible light spectrum. The complexes can be used within an organic active layer in electronic devices, such as displays, detectors, voltaic cells, solid-state lighting, illumination devices or the like. The complexes may also be used as catalysts or as indicators in other applications. The new compounds can be used without the need of a host material. In non-limiting embodiments, Pt or Ir may be used for the metal atom within the complex, one ligand may include a phosphorus-containing bidentate ligand, and another ligand may include a monoanionic bidentate ligand. The phosphorus-containing bidentate ligand may include a benzyl group, a phenoxy group, a phenylamino group, or the like.
Abstract:
The present invention relates to charge transport compositions. The invention further relates to electronic devices in which there is at least one active layer comprising such charge transport compositions.
Abstract:
This invention relates to electroluminescent fluorinated pyrene compounds. It also relates to electronic devices in which the active layer includes an electroluminescent fluorinated pyrene compound.
Abstract:
Olefins, such as ethylene, are polymerized using as a polymerization catalyst a complex of a selected transition metal with an anionic ligand that has at least three atoms that may coordinate to the transition metal. Also disclosed are the above selected transition metal complexes, and intermediates thereto.
Abstract:
The present invention is generally directed to luminescent lanthanide compounds with phosphine oxide, phosphine oxide-sulfide, pyridine N-oxide, and phosphine oxide-pyridine N-oxide ligands. It also relates to electronic devices in which the active layer includes a lanthanide complex.
Abstract:
Olefins, such as ethylene, are polymerized using as a polymerization catalyst a complex of a selected transition metal with an anionic ligand that has at least three atoms that may coordinate to the transition metal. Also disclosed are the above selected transition metal complexes, and intermediates thereto.
Abstract:
Improved photovoltaic cells utilizing for a semiconductor layer, titanium dioxide powders, consisting of porous particles, ranging in size from 0.1 to 10 microns (10−6 meters), and possess relatively high bulk density combined with high surface area.
Abstract:
Olefins such as ethylene and propylene may be polymerized by using as catalysts novel selected transition metal complexes of bis(carboximidamidatonates) in which the carboximidamidatonate groups are connected together through covalent bonds by a bridging group. The resulting polymers are useful as molding and extrusion resins.
Abstract:
In the present invention, methods and apparatus for making efficient cladding pumping fiber lasers is disclosed. In particular, new fiber cladding geometry and new method of coupling pumping laser into an optical fiber are disclosed. Both aspects of the present invention will facilitate the realization of high-efficiency and high-power fiber lasers. In the present invention, cladding boundary geometry structures that can prevent the formation of local modes are disclosed. Besides the cladding geometry, methods for efficient coupling of diode lasers into a laser fiber for high power injection are also disclosed. Essentially, the new methods make it possible to transmit diode laser beams for a long distance with substantially the same brightness. In other words, with the methods and apparatus disclosed, a laser beam from a laser diode array with collimating structures can be transmitted for a long distance while the beam spot dimension including beam divergence can be kept substantially unchanged even if the beam from said array is not substantially collimated. With the method taught in the present invention, laser diode array modules can be formed with laser diode arrays (LDA) with collimating structures and relay systems. Because of the brightness conservation nature of the modules, when a plurality of such modules (such as 3, 9 or more than 200 pieces) are combined, the beams from the arrays can be efficiently coupled into an optical fiber. Thus the pumping laser coupling method can be used for the construction of high-efficiency and high-power fiber lasers. Thus, the fiber lasers of this invention may comprise of a fiber laser core doped with active species, a symmetry-broken inner cladding or a multiple-imaging inner cladding surrounding said core, a plurality of brightness substantially-conserved laser diode array module for coupling the beam from said laser diode array module into said inner cladding.