摘要:
A method for illuminating a mask with a source to project a desired image pattern through a lithographic system onto a photoactive material including: defining a representation of the mask; obtaining a fractional resist shot noise (FRSN) parameter; determining a first relationship between a first set of optical intensity values and an edge roughness metric based on the FRSN parameter; determining a second relationship between a second set of optical intensity values and a lithographic performance metric; imposing a set of metric constraints based on one of the first and second relationships; setting up an objective function of optimization based on the remaining of the two relationships; determining optimum constrained values of the representation of the mask based on the set of metric constraints and the objective function; and outputting these values.
摘要:
A method, system, and computer usable program product for fracturing a continuous mask usable in photolithography are provided in the illustrative embodiments. A first origin point is selected from a set of points on an edge in the continuous mask. A first end point is identified on the edge such that a separation metric between the first origin point and the first end point is at least equal to a threshold value. Several alternatives are determined for fracturing using the first origin point and the first end point. A cost associated with each of the several alternatives is computed and one of the alternatives is selected as a preferred fracturing. Several pairs of origin points and end points are formed from the set of points. Each pair has a cost of a preferred fracturing between the pair. The continuous mask is fractured using a subset of the several pairs.
摘要:
A method for illuminating a mask with a source to project a desired image pattern through a lithographic system onto a photoactive material including: defining a representation of the mask; obtaining a fractional resist shot noise (FRSN) parameter; determining a first relationship between a first set of optical intensity values and an edge roughness metric based on the FRSN parameter; determining a second relationship between a second set of optical intensity values and a lithographic performance metric; imposing a set of metric constraints based on one of the first and second relationships; setting up an objective function of optimization based on the remaining of the two relationships; determining optimum constrained values of the representation of the mask based on the set of metric constraints and the objective function; and outputting these values.
摘要:
The present invention provides a lithographic difficulty metric that is a function of an energy ratio factor that includes a ratio of hard-to-print energy to easy-to-print energy of the diffraction orders along an angular coordinate θi spatial frequency space, an energy entropy factor comprising energy entropy of said diffraction orders along said angular coordinate θi, a phase entropy factor comprising phase entropy of said diffraction orders along said angular coordinate θi, and a total energy entropy factor comprising total energy entropy of said diffraction orders. The hard-to-print energy includes energy of the diffraction orders at values of the normalized radial coordinates r of spatial frequency space in a neighborhood of r=0 and in a neighborhood of r=1, and the easy-to-print energy includes energy of the diffraction orders located at intermediate values of normalized radial coordinates r between the neighborhood of r=0 and the neighborhood of r=1. The value of the lithographic difficulty metric may be used to identify patterns in a design layout that are binding patterns in an optimization computation. The lithographic difficulty metric may be used to design integrated circuits that have good, relatively easy-to-print characteristics.
摘要:
Programmable illuminators in exposure tools are employed to increase the degree of freedom in tool matching. A tool matching methodology is provided that utilizes the fine adjustment of the individual source pixel intensity based on a linear programming (LP) problem subjected to user-specific constraints to minimize the difference of the lithographic wafer data between two tools. The lithographic data can be critical dimension differences from multiple targets and multiple process conditions. This LP problem can be modified to include a binary variable for matching sources using multi-scan exposure. The method can be applied to scenarios that the reference tool is a physical tool or a virtual ideal tool. In addition, this method can match different lithography systems, each including a tool and a mask.
摘要:
A structure and a method for an equi-brightness optimization. The method may include projecting a plurality of bright patterns having a plurality of bright points and a plurality of dark patterns having a plurality of dark points on a substrate, generating a plurality of joint eigenvectors of the plurality of bright points and a plurality of dark points, selecting a predetermined number of joint eigenvectors to project the plurality of bright patterns, generating a plurality of natural sampling points from the plurality of bright points, wherein the plurality of natural sampling points has a substantially equal intensity, and obtaining a representation of an aperture from the plurality of natural sampling points, wherein an image of the representation of the aperture has a substantially uniform intensity.
摘要:
Methods, and a program storage device for executing such methods, for performing model-based optical proximity correction by providing a mask matrix having a region of interest (ROI) and locating a plurality of points of interest within the mask matrix. A first polygon having a number of vertices representative of the located points of interest is computed, followed by determining a spatial relation between its vertices and the ROI. The vertices of the first polygon are then pinned to boundaries of and within the ROI such that a second polygon is formed on the ROI. The process is repeated for all vertices of the first polygon such that the second polygon is collapsed onto the ROI. This collapsed second polygon is then used to correct for optical proximity.
摘要:
A method is provided for modeling lithographic processes in the design of photomasks for the manufacture of semiconductor integrated circuits, and more particularly for simulating intermediate range flare effects. For a region of influence (ROI) from first ROI1 of about 5λ/NA to distance ROI2 when the point spread function has a slope that is slowly varying according to a predetermined criterion, then mask shapes at least within the distance range from ROI1 to ROI2 are smoothed prior to computing the SOCS convolutions. The method provides a fast method for simulating intermediate range flare effects with sufficient accuracy.
摘要:
The present invention relates to the modeling of lithographic processes for use in the design of photomasks for the manufacture of semiconductor integrated circuits, and particularly to the modeling of the complex effects due to interaction of the illuminating light with the mask topography. According to the invention, an isofield perturbation to a thin mask representation of the mask is provided by determining, for the components of the illumination, differences between the electric field on a feature edge having finite thickness and on the corresponding feature edge of a thin mask representation. An isofield perturbation is obtained from a weighted coherent combination of the differences for each illumination polarization. The electric field of a mask having topographic edges is represented by combining a thin mask representation with the isofield perturbation applied to each edge of the mask.
摘要:
A method, system, computer program product and table lookup system for calculating image intensity for a mask used in integrated circuit processing are disclosed. A method may comprise: decomposing a Manhattan polygon of the mask into decomposed areas based on parallel edges of the Manhattan polygon along only one dimension; determining a convolution of each decomposed area based on a table lookup; determining a sum of coherent systems contribution of the Manhattan polygon based on the convolutions of the decomposed areas; and outputting the determined sum of coherent system contribution for analyzing the mask.