Abstract:
A liquid crystal display (LCD) power supplying circuit includes a motherboard switch circuit, an LCD power circuit, a power switch circuit, and a first power supplying unit. An input terminal of the motherboard switch circuit is coupled to a power output terminal of a motherboard. An input terminal of the power switch circuit is coupled to the LCD power circuit. The first power supplying unit is coupled to an output terminal of the motherboard switch circuit, an output terminal of the power switch circuit and a microprocessor, and the first power supplying unit supplies power from the motherboard or power from the LCD power circuit to the microprocessor.
Abstract:
An extensible switching power circuit includes a plurality of switching power modules and a plurality of synchronous signal generators. Every two adjacent switching power modules are connected through a synchronous signal generator. The switching power modules generate induction electric potentials. Each synchronous pulse generator measures relevant electric potentials of the previous switching power module connected thereto and generates corresponding synchronous signals sent to the subsequent switching power module connected thereto. The subsequent switching power module regulates the phase of its induction electric potential according to the synchronous signals, such that the induction electric potentials of the two adjacent switching power modules compensate each other's energy gaps.
Abstract:
An power supply circuit includes at least one voltage converting circuit, a plurality of output branches, and a plurality of power assigning elements. The at least one voltage converting circuit is configured for converting a primary voltage signal to at least one alternating current (AC) voltage signal. Each of the output branches is configured for providing a direct current (DC) power supply to a respective load circuit based on the at least one AC voltage signal. The power assigning elements are configured to reassign the DC power supplies provided by the output branches to the load circuits.
Abstract:
A power supply circuit includes a voltage output controller configured for outputting voltages, a standby controller configured for directing the voltage output controller to provide voltage to a load, and a microprocessor configured for controlling the standby controller according to a mode of the load. The voltage output controller is applied with a direct current voltage. When the load enters active mode from a powered off mode, the standby controller sends a control signal to the voltage output controller to output direct current voltage to the load and the microprocessor. When the load enters standby mode from the active mode, the microprocessor directs the standby controller to prevent the voltage output controller from outputting direct current voltage to the load and the microprocessor.
Abstract:
A nitride read only memory (NROM) erase system is disclosed. The NROM erase system comprises at least one memory sector, N sense amplifiers, and N buffers. The memory sector is segmented into N erase retry units according to the number of the sense amplifiers. One buffer corresponds with one erase retry unit and one sense amplifier. The N buffers are used to indicate whether their corresponding erase retry units are erased after an erase process of an erase operation. One of the buffers will be set if its corresponding erase retry unit is not erased. In this case, a subsequent erase process will begin to erase the un-erased erase retry unit. The erase retry units that are erased in a previous erase process will not be affected by the subsequent erase process. A method for using the NROM erase system is also described.
Abstract:
A NROM memory device includes an array of memory cells and first and second bit lines. The first and second bit lines are coupled to opposite sides of the memory cells. During an erase operation, one of the sides of the memory cells receives a positive voltage and the other side couples to a common node or a limited current source. Methods are also disclosed that can easily screen for marginal memory cells based on a threshold voltage distribution of the memory cells.
Abstract:
A phosphorus-containing compound represented by formula (I) and a preparation method thereof are provided. An addition reaction is performed for an organic cyclic phosphorus compound with an aryl aldehyde compound, and then a condensation reaction is performed with an aryl compound having active hydrogen in the use of an organic acid as a catalyst to obtain the proposed phosphorus-containing compound. This phosphorus-containing compound can be used as a hardener for resin, and improves flame retardant properties and thermal resistance for a flame retardant epoxy resin composition, thereby suitably applied to resin compositions used for manufacturing printed circuit boards and laminated circuit boards in electronic or electric products.