Abstract:
A method of fabricating a flexible thin film transistor array substrate is provided. First, a rigid substrate is provided, and a polymer material layer is coated on the rigid substrate. Then, an insulating layer is coated over the polymer material layer by a spin coating process. The insulating layer covers the sides of the polymer material layer. Thereafter, a thin film transistor array is formed over the insulating layer. Then, the polymer material layer having the thin film transistor array is separated from the rigid substrate.
Abstract:
A liquid crystal display. The liquid crystal display includes a color filter substrate and an array substrate, wherein at least one of the color filter substrate and the array substrate comprises polyimide having formula (I): wherein A and A′ are the same or different and comprise cycloaliphatic compounds or aromatic compounds, B and B′ are the same or different and comprise cycloaliphatic compounds or aromatic compounds, and x and y are 10˜10000, wherein at least one of A and A′ is a cycloaliphatic compound.
Abstract:
The present invention provides an organic/inorganic composite film, which includes a poly(vinylidene fluoride) (PVDF) and inorganic nano-platelets dispersed therein. A weight ratio of the PVDF and the inorganic nano-platelets is between about 97:3 and 20:80. The inorganic nano-platelets have a particle size of about 20-80 nm, wherein the organic/inorganic composite film has a transparency of greater than about 85% at a wavelength between 380 and 780 nm. In addition, a method for forming the organic/inorganic composite film is also provided.
Abstract:
An optical device structure with a light outcoupling layer is provided. The optical device structure includes a substrate having a first surface and a second surface, and a layer of polyimide (PI) or its copolymer formed on the first surface of the substrate, wherein the layer of polyimide or its copolymer is prepared from at least one aromatic diamine and at least one cycloaliphatic dianhydride, and an optical component formed on the layer of polyimide or its copolymer.
Abstract:
A flexible substrate structure including a flexible metal carrier, a surface-modified layer and a flexible plastic substrate is provided. The flexible metal carrier includes a first region and a second region. The surface-modified layer is located on and contacts with the first region of the flexible metal carrier. The flexible plastic substrate is located over the first region and the second region. The flexible plastic substrate over the first region contacts with the surface-modified layer. The flexible plastic substrate over the second region contacts with the flexible metal carrier.
Abstract:
A method of fabricating a flexible substrate structure is provided. A flexible metal carrier including at least one first region and at least one second region is provided. A surface-modified layer is formed on the first region of the flexible metal carrier. A flexible plastic substrate is formed over the first region and the second region of the flexible metal carrier. The flexible plastic substrate over the first region contacts with the surface-modified layer. The flexible plastic substrate over the second region contacts with the flexible metal carrier.
Abstract:
A substrate structure applied in flexible electrical devices is provided. The substrate structure includes a carrier, a release layer overlying the carrier with a first area and a flexible substrate overlying the release layer and the carrier with a second area, wherein the second area is larger than the first area and the flexible substrate has a greater adhesion force than that of the release layer to the carrier. The disclosure also provides a method for fabricating the substrate structure.
Abstract:
A liquid crystal display device comprises a color filter substrate and an array substrate. An optical compensation film is disposed on the color filter substrate and/or the array substrate, wherein the optical compensation film comprises a polyimide, comprising the following formula: wherein n is an integer greater than 1, and wherein when A is cyclo-aliphatic compound, B is aromatic compound or cyclo-aliphatic compound, and when A is aromatic compound, B is cyclo-aliphatic compound.
Abstract:
A substrate structure applied in flexible electrical devices is provided. The substrate structure includes a carrier, a flexible substrate opposed to the carrier, a release layer formed on a surface of the flexible substrate opposed to the carrier, and an adhesive layer formed between the carrier, the release layer and the flexible substrate, wherein the area of the adhesive layer is larger than that of the release layer, and the adhesive layer has a greater adhesion force than that of the release layer to the flexible substrate. The invention also provides a method for fabricating the substrate structure.
Abstract:
An organic/inorganic hybrid material is provided, including an organic polymer, and a plurality of inorganic nano-platelets, wherein the inorganic nano-platelets are self-connected or connected via a linker to constitute an inorganic platelet network. By the formation of the inorganic network structure, the hybrid materials can keep their transparency and flexibility at a high inorganic content, and exhibit greatly reduced coefficients of thermal expansion A method for fabricating the organic/inorganic hybrid material is also provided.